Genome-scale models are made of this

Julius Battjes!, Jurgen R. Haanstra!, Gioele Lazzari?, Francesco Moro!, Christoff Odendaal', Maaike Remeijer!,
Steven Wijnen!, and Pranas Grigaitis’®

1Systems Biology Lab, A-LIFE & AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam,
the Netherlands
2Department of Biotechnology, University of Verona, Verona, Italy

CORRESPONDENCE p.grigaitis@vu.nl

Version 13.02.2024

This work ©2024 by Battjes et al. is licensed under CC BY-NC 4.0.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/.

http://creativecommons.org/licenses/by-nc/4.0/

Battjes et al. Genome-scale models are made of this

CONTENTS

[l Software for handling GEMs|

S

1.1 ySCes CBMPy| o o e e 6
(L2 COBRATOOIDOXI. . « v v v v v ot e e e e e e e e e e e e e e e e e e 6
3 COBRADY| - -« v v v et 6
L4 RAVENTOOIDOX|. . . . v v o o et e 6
[I.5 Handling GEMsinJulial ittt et e e e 6
[1.6 Mostly used LP/MILP SOLVEIS| v v it it e e e e e e e e e e e e e e 7

|2 Collecting the data) 7
[2.1 Start from scratch: annotating an unknown genome| L. L. 7
[2.2 Obtaining annotated proteomes| i i ittt e e 8
[2.3 Selection of template model(s) and proteome(s)] ittt 8

|3 Reconstructing the draft model| 8
... 8
3.2 RAVENTOOIDOX|. . « v v v o o e 9
3.3 CarveMel e e e e e e e e e e e 9

|4 Make it grow: gapfilling of the draft model| 9
[4.1 Manual gapfilling strategies|. e e e e e e e e 10
[4.2 (Semi-)automatic gapfilling strategies| e 10
[4.3 Formulating (dummy) biomass equation|, 1
|44 Adding exchange and transportreactions| ittt . 11
[4.5 Representing the growth medium| iiinnenenenen.. 12
[4.5.1 Specifying experimentally determined uptake fluxes| 12

[4.5.2 Approximating uptake fluxes from substrate concentrations| 12

[4.5.3 Specitying molar substrate amounts (advanced)| 13
5_Model curationl 13
Bl Checkstorunl. 13
Bl Blockedreactionsl 13

[5.1.2 Spontaneous ATP production|ttt 13

[5.1.3 Dead-end and orphan metabolites| 14

[5.1.4 Elemental and charge conservation|, 14

[5.2 SBML features to store annotations]. « . . v v vttt e e e e e e e e 14
5.3 MEMOTE] . . . o o e e e e e e e e e e e e e e e e 15

|6 Running the model| 15
6.1 Flux balance analysis| e e e e e e e e 15
|6.2 Software commands for running FBA| 15
[6.3 Sensitivity analysis|. e e e e e 16

|7 Advanced model handling] 17
7.1 1sualization of n RS . e e e e e 17

[7.2 Verifying the numerical accuracy of thesolution| 17

[7.3 Setting a suitable solver method| 17

[74 Context-specificmodels| e e e e e e e e e e e e 18
[74.1 GIMME-like algorithms| e 18

[74.2 iMAT-like algorithms| e 19

[74.3 MBA-like algorithms|. 19

[7.5 Choosingtheright MEM|. ittt et e e 20

[7.6 Strain-specificmodels| L. e e e e 20

Battjes et al. Genome-scale models are made of this

[77 Communitymodels| e e e e e e 22
ful r I 22
|9 Data types and index| 23

Battjes et al. Genome-scale models are made of this

INTRODUCTION AND WORKFLOW

Genome-scale metabolic models (GEMs) are a widely-used and - by now - constitute the most compre-
hensive modeling framework for large-scale metabolic networks. The main idea behind this framework is
that most of the information needed to understand metabolic networks is stored in the stoichiometry (=ratios
in which molecules are consumed or formed) of (bio)chemical reactions. By collecting the information
for as many reactions as possible, we can obtain a comprehensive snapshot of the metabolic potential of an
organism, meaning all the interconversions it could do (famously illustrated by the Biochemical Pathways
poster). Then we can apply mathematical optimization, primarily linear programming, to obtain quantitative
predictions of the fluxes through the metabolic network.

Here, at the Systems Biology Lab, we have a good track-record of successfully creating, curating, and
using genome-scale models to test biological hypotheses. Technically, this history started with the Lactiplan-
tibacillus plantarum - formerly Lactobacillus plantarum - model by Bas Teusink [I]). The models that we have
created and/or used span a wide range of organisms, from microbial cells to - increasingly - higher eukary-
otes. We have recently reviewed the potential applications of GEMs in the context of food microbiology [2]
(Figure[l). The current document covers some practical aspects regarding the reconstruction and analysis
of GEMs.

With the increasing number of available genome sequences, the motivation for using GEMs for hypothesis
testing is at an all-time high. Yet, practice shows that extensive - in many cases manual - curation is essential
for crafting high-quality reconstructions. There are automatic reconstruction pipelines that handle all the
steps that are traditionally done either manually or semi-automatically, yet the resulting models should be
treated as exploratory tool and not complete/high-confidence reconstructions.

In this document, we have tried to summarize the current genome-scale modeling practices in our lab
(Figure[1). This involves several steps: model drafting, model curation, and model analysis. We focus on the
first two steps as model analysis depends strongly on the biological question, and is often done using custom
scripts. This text aims to aid users with little knowledge of the actual procedures behind the concepts to
make their way up the steep, but rewarding, hill of learning how to work with GEMs. Happy modeling!

query models orthology draft model curated &
& databases & reconstruction T validated model

— X JI
=N e B] _‘_@
e S ‘ > HER S
>’J A | omics data growth data
Metabolome Proteome Transcriptome Genome 7
o MeN L VB O\ 0 gé -
&o#%‘, mﬁ&w&f NS "‘f@a:%‘c) (‘

solution space flux balance analysis resource allocation dynamlc FBA

Metabolite profiles

20
v Acetate

£ 10 i
PO 2 e
5 %
£ Lactate S
MaX Viiomass E o° % |
5 0 A £
v " [02 04 06 Sl I = ==
Growth rate (h) Time (h)
metabolic potential . . . y
& pathway discovery optimal state overflow metabolism dynamic profiles

Current Opinion in Biotechnology

Figure 1: The overview of the workflow for reconstructing and analyzing GEMs. Figure taken from [2].

http://biochemical-pathways.com/

Battjes et al. Genome-scale models are made of this

PRIMER TO Flux Balance Analysisﬂ We can imagine a metabolic network as a highly-connected pipe system:
matter enters the inlet pipe, flows from one pipe to another, connects another stream of matter, and flows
away through the exhaust pipe. Thus the flux through the metabolic reaction ("pipe") is amount of matter per
unit of time (mol s7! in SI units). We can transform GEMs into optimization (linear programming) problems,
and the most popular method to analyze these models is Flux Balance Analysis (FBA) [4].

FBA assumes that the metabolic network is in a steady-state (=in balanced growth) (N x v = 0, with the N
being the stoichiometric matrix, and v - the flux vector, or the list of flux values through each reaction). We
apply constraints to the metabolic network, so-called flux bounds, and then perform optimization with respect
to the objective function: a flux that we want to optimize (minimize/maximize). The result of optimization
is a so-called optimal flux distribution, the numerical values of the v which optimize the flux through the
objective function and satisfy the constraints at steady-state.

In most cases, the objective function represents the formation of new biomass, and sometimes is called
biomass objective function (BOF) instead. The BOF describes the quantity of each biomass component (proteins,
RNA, DNA ...) that is required to produce 1 gram of dry weight (gDW) of cells. When FBA objective is to
maximize the biomass production, FBA will output a solution with the highest biomass yield per limiting
nutrient (see a graphical representation below, adapted from [5]). The growth rate corresponding to the
highest yield solution then is the product of the yield and the nutrient influx into the cell.

Nutrient Nutrient influx
[mmol] [mmol gDW™ h]

gDW biomass __
mmol nutrient —

Biomass Growth rate
[gDW] Hmax [h™]

Figure 2: Schematic overview of flux balance analysis. Figure taken from [3].

A unit flux through the BOF would mean that 1 gram of new biomass is produced per time unit and the
specific growth rate is 1. In genome-scale modeling, we usually handle the flux of matter in mmol h~!, and
scale fluxes proportional to the gDW of cell biomass (so, the typical dimension is mmol gDW~! h71). As we
input the amounts of cell biomass precursors in mmol gDW 1, the dimension of the BOF flux is h~! therefore.
In GEMs, a unit flux through the BOF is equal to the specific growth rate u =1 h~1.

1 SOFTWARE FOR HANDLING GEMs

The first steps, the data collection, usually does not use any specific software to execute. Before we
continue with the actual modeling (reconstruction of a draft metabolic model), we first will cover the current
options for the basic tools of handling GEMs. Over the years, a multitude of software packages has been
developed for handling GEMs, mostly for use in Python- or MATLAB environments. GEMs are usually
subjected to optimization, namely, linear programming (LP), thus, the choice of linear solver is a recurring
issue - we will briefly discuss the most popular solvers.

1Material taken from [3]

Battjes et al. Genome-scale models are made of this

Keep in mind that there are no predefined routines in any of these packages for many advanced appli-
cations, and you will have to write small original scripts yourself. However, having a good command of
any of these tools will help you automatize many of such steps. Here we will not provide a comprehensive
overview of all the packages, only the most popular ones.

1.1 PYSCes CBMPY

CBMPy ('PySCeS Constraint Based Modelling’) [6] is a GEM manipulation package written in Python by
our colleague Brett Olivier. Currently, CBMPy supports two LP solvers, CPLEX and GLPK (note that GLPK
implementation is incomplete as for April 2023).

An advantage of the CBMPy philosophy (=how the models are interacted with) is that every variable in
the model is an object - you can call individual compartments, genes, reactions, metabolites, and reaction
reagents. For some, this might seem counter-intuitive, although it starts making sense as you become more
proficient. Brett has extensively documented most of the package functions here|and can help with more
advanced issues himself. For most of the model handling, CBMPy is the lab’s package of choice.

1.2 COBRATooLBOX

MATLAB-based (' COnstraint-Based Reconstruction and Analysis’) COBRA Toolbox [7] is developed
primarily in Bernhard @. Palsson’s group at the University of California in San Diego. The COBRA Toolbox is
probably the oldest multi-purpose GEM modeling package in active development. COBRA Toolbox’s website
has a lot of material for new users - tutorials, user manuals, case examples - all of which makes it easier to
adopt. It works with all popular LP solvers: CPLEX, GLPK and Gurobi, as well as the internal MATLAB LP
solver.

For a long time, the COBRA Toolbox used to be pretty much the only choice available (with a notable
exception of CellNetAnalyzer). Many of its the functions are by now implemented in the RAVEN Toolbox as
well [8].

Model handling in the COBRA Toolbox is primarily via function calling, object-based routines are rather
rare - making its philosophy different from CBMPy and COBRApy (see below). Nowadays, a notable issue
of using the COBRA Toolbox is its incomplete adherence of the latest Systems Biology Markup Language
(SBML) standards (currently, the latest standard is SBML Flux Balance Constraints [FBC] v3.2 [9]).

1.3 COBRAPY

With the adoption of Python in the life- and natural sciences (e.g. libraries such as pandas, numpy,
and scipy), many scientific MATLAB packages were ported to Python. COBRApy|[10] is the COBRA Toolbox
counterpart in Python. COBRApy works with CPLEX, GLPK and Gurobi, and follows an object-based modeling
philosophy, similar to CBMPy. A valuable functionality of COBRApy is the interoperability of different model
file types: alongside SBML, COBRApy also supports YAML, JSON, and MATLAB-container models.

COBRApy is probably the most popular GEM toolbox in the scientific community right now, so many
other (more niche) packages are compatible with COBRApy, such as StrainDesign [11] and Escher [12].

1.4 RAVEN TooLBoOX

The RAVEN Toolbox [8] is a multi-purpose toolbox for the generation and curation of genome-scale
models, and is implemented in MATLAB. Model handling in the RAVEN Toolbox is similar to the COBRA
Toolbox: most of the functionality has to be called as separate functions, rather than following an object-
oriented approach (cf. CBMPy). Moreover, many of the recent methods for -omics data integration are
implemented in RAVEN.

1.5 HANDLING GEMS IN JULIA

Julia is a programming language created to combine the ease of use and high-level abstractions of
languages (like Python and MATLAB) with the performance of low-level languages (like C and Fortran). It
can be a valuable option to consider when dealing with very large GEMs that require big clusters and high
performance computing. There are Julia packages which allow handling and analysis of large constrained
metabolic models, notably COBRA.]l (implementation of the COBRA toolbox in Julia) and COBREXA.jl.

https://github.com/SystemsBioinformatics/cbmpy
https://teusinkbruggemanlab.nl/brett-olivier/
https://pythonhosted.org/cbmpy/modules_doc.html
https://opencobra.github.io/cobratoolbox/stable/
http://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
https://github.com/SysBioChalmers/RAVEN
https://cobrapy.readthedocs.io/en/latest/
https://github.com/SysBioChalmers/RAVEN
https://julialang.org/
https://opencobra.github.io/COBRA.jl/stable/
https://lcsb-biocore.github.io/COBREXA.jl/stable/

Battjes et al. Genome-scale models are made of this

1.6 MOSTLY USED LP/MILP SOLVERS

CPLEX, GLPK and Gurobi are the most popular solvers, but there are more solvers. Recently, they have
been compared quite elaborately [13].

CPLEX [IBM CPLEX is a commercial solver for linear programming- (LP) and mixed-integer linear programming-
(MILP) problems which has long been considered the industry standard. For use with Python packages,
there’s a Python API. However, MATLAB support was discontinued from version 12 onwards. Non-academic
users have to buy a license in order to use the solver, but a fully-equipped version is available for academic
users, registered to IBM Academic Initiative| (use your university e-mail and credentials).

Warning! There is also a trial free version of CPLEX solver (and academic vs. trial is easy to mix up),
however, it is restricted to solving LP programs below 1000 variables. Be careful about which version you
download.

Warning for Windows users! After installation on your computer, you need to connect CPLEX to Python
(if you want to use it in Python). For this, you get a command on the last screen before you finish your
installation. On Windows, you need to run this command in the command line as an administrator (Windows
menu — e.g. Anaconda Prompt — on the right, click ‘Run as administrator’). For more detailed installation
instructions, see the GEM handling tutorial in Chapter|8]

GUROBI |Gurobi|is another leading commercial LP- and MILP-solver. While many Python-based GEM
handling environments preferentially support CPLEX, Gurobi is easy to setup for MATLAB-based tools and,
in general, for other MATLAB packages that perform mathematical optimization. A Python API is also
available and is utilized by COBRApy, but Gurobi is currently not supported by CBMPy. Academic licenses
for Gurobi are available for free by registering with your university e-mail. Every license has to be activated,
see the instructions on the website for your operating system.

GLPK |GNU Linear Programming Kit/is an open-source - as all GNU things are - library for solving LPs
and MILPs. GLPK has APIs/bindings to both Python and MATLAB environments, and can, in principle, be
used with all the GEM handling packages listed above. There are a couple of issues with using GLPK as the
primary solver: first, commercial solvers apply fast proprietary algorithms to solve LPs, and therefore GLPK
does not exhibit comparable solving efficiency - especially for MILPs. Next, for (programming) beginners,
compiling and setting up GLPK might be a challenging task.

2 COLLECTING THE DATA
2.1 START FROM SCRATCH: ANNOTATING AN UNKNOWN GENOME

To construct a GEM from scratch, a sequenced genome of the organism(s) of interest is required.

Often, the genomic information is stored in a FASTA file, containing contigs. Each contig is composed of
a header (the line starting with *>’), followed by a DNA sequence. If your organism is a bacterium which has
been deeply sequenced, then the assembler should give you a FASTA file with just 1 longer contig + n shorter
contigs, where n is the number of plasmids. This is what is usually called a “complete” or “closed” genome.
However, you don’t necessarily need a closed genome to create a GEM. For example, common Illumina short
read sequencing coupled to an established assembler like SPAdes [14] could give you a bacterial assembly of
around 200 contigs. Even those fragmented assemblies should be enough to start building your GEM.

Given your genome assembly, you first need to extract genes from it. In particular, you are interested
in predicting enzyme-coding sequences (CDS). Prodigal [15] is an established gene prediction tool worth
trying. Remember that in this step you are only extracting sequences, and not assigning a function to them.
Gene prediction tools like Prodigal give you the coordinates of the genes relative to their own contig, usually
in generic feature format (gff) or Genbank-like format (gbk). Most importantly, they also give you the
proteome of your organism, i.e. a FASTA file containing all the CDS sequences of your organism translated
to amino acids (usually it has the . faa extension). In the next chapters, you will find out how you can use
this proteome to build up a GEM.

An alternative way to get a reliable proteome out of your genome is to use the online tool, eggNOG-mapper
(eggNOG-mapper). This tool automatically assigns open reading frames (ORFs) and maps them to known
CDS in databases. The output is a complete proteome in FASTA format accompanied by an informative

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/academic/topic/data-science
https://www.gurobi.com/
https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.gnu.org/software/glpk/
http://eggnog-mapper.embl.de/

Battjes et al. Genome-scale models are made of this

sheet on the mapped proteins. The FASTA file can be readily used in further GEM construction. The default
settings of the mapper are usually sufficient but can be manipulated if necessary.

2.2 OBTAINING ANNOTATED PROTEOMES

If your target organism’s genome has already been sequenced, there is a good chance that the annotated
proteome (and perhaps reference proteome as well) will be published in at least one of the following
databases: UniProt or NCBI Genome. That said, the "reference proteome" from UniProt in many cases
requires manual curation of the entries and the reference proteome might be incomplete. It is therefore
recommended to use the NCBI Genome assembly instead: NCBI uses internally developed pipelines to
annotate newly submitted genomes de novo (see the manual for the NCBI Eukaryotic Genome Annotation
Pipeline). On the Assembly page, select "Download", click on "Protein FASTA (. faa)" and make sure that
RefSeq is the only data source checked (uncheck GenBank).

2.3 SELECTION OF TEMPLATE MODEL(S) AND PROTEOME(S)

A good first step is to locate your target organism in the NCBI Taxonomy| database. This interactive tool
allows you to see the "neighboring" organisms in the taxonomy tree. These might be good candidates as your
second most preferred template, if a metabolic reconstruction is available. Many tools allow you to rank
models, i.e. prioritize obtaining reactions from Model #1, rather than Model #2 during the reconstruction
process.

For all things GEM, the primary database is BiGG. There, you can also find many previously published
GEMs, as well as a reaction and metabolite database. It is highly recommended, where possible, to use the
models deposited on BiGG as template models to ensure compatibility.

3 RECONSTRUCTING THE DRAFT MODEL

In this text, we will focus on template-based GEM reconstruction, which can be performed using several
tools [8, 16]. In the process, a draft model is generated from the genome of an organism by homology
prediction against one or more existing metabolic models ("templates"). Preferably, these models are ranked
in the order of closeness to the organism of interest. An alternative to the template-based approach is de
novo or ab initio reconstruction. Ab initio methods are conceptually similar to template-based approaches,
but they mainly resort on information mining from metabolic pathway databases, such as KeGG or MetaCyc.

Rather than going fully purist on either ab initio or template-based approaches, these two are usually
treated as complementary to each other. In such a case, template-based reconstruction would be performed
to generate a draft model with a reliable core of well-annotated reactions from existing models. This first
draft can then be combined with the de novo reconstruction to include organism-specific reactions that are
absent in used template models.

3.1 METADRAFT

MetaDraft is a tool for automated GEM reconstruction based on BiGG models, which makes use of
the CBMPy modelling framework. The tool uses an annotated proteome as input (. faa/. fasta). As every
BiGG model comes with GPRs, the input proteome is compared to one or several BiGG proteomes. This
comparison is done through Inparanoid in combination with an offline BLAST version. Inparanoid is an
algorithm that is specialized in orthology selection.

When selecting multiple BiGG models as templates for draft reconstruction, the priority of the template
models can be set. If one gene of the input proteome has multiple homology hits in different models, with
differing reaction labels, the GPR homology from the model with highest priority is picked. You could argue
that the priority of the template models be set according to phylogenetic distance. The Metadraft GUI makes
it easy to select the preferred mapped reaction if desired. The same goes for homologous gene hits within
one template model.

Another handy functionality of Metadraft is the option to upload any template model that you prefer. The
model has to be loadable by the CBMPy function cbmpy.loadModel (). Beware that if the template model is
not labeled in BiGG format, meaning that if multiple draft models are used, similar reactions with different
labeling are added to the draft reconstruction.

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/data-hub/genome/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/tree/
http://bigg.ucsd.edu/
https://www.kegg.jp/kegg/
https://metacyc.org/
https://systemsbioinformatics.github.io/cbmpy-metadraft/
http://bigg.ucsd.edu/

Battjes et al. Genome-scale models are made of this

3.2 RAVEN TooLBOX

The RAVEN Toolbox (see Section[l]for details on the software itself) method getModelFromHomology () is
used for generating draft models. The routine determines homologous enzymes by running a bidirectional
protein BLAST (getBlast()). Then, the draft model is generated using getModelFromHomology (). Most of
the parameters that one can tweak are related to the homology cut-offs for the bidirectional BLAST output:
the minimal identity of the sequences (default: 40%), the minimal length of amino acid chain (default: 200),
and so on.

The required inputs are:

» The annotated proteome (. faa/. fasta) file of the target organism
« Template models and their proteomes

Tip! How to generate the proteome of the template model: obtain the list of genes present in that model,
preferably in some useful identifier schema (UniProt ID works the best but also consider other formats, like
NCBI Gene, Ensembl, etc.). Then use the ID Mapping feature of the|UniProt website|to match your identifiers.
Finally, in the Results window, select Download > FASTA.

Warning! Make sure your gene identifiers in the model (without the G_ prefix) and in the . fasta file
match, otherwise the algorithm will not detect them.

3.3 CARVEME

The traditional bottom-up approaches described above can be either replaced or complemented by the
top-down approach implemented in CarveMe| [I7]. Instead of starting from the organism’s genome and
finding the reactions corresponding to its metabolic genes, CarveMe relies on a (semi-)manually curated
universal draft model, which includes all the reactions available in BiGG. This universal model is then
converted into an organism-specific model by removing reactions and metabolites unlikely to be present in
the given organism, in light of its genome. Finally, the model undergoes a round of automatic gap-filling.

This approach allows for an automated and parallelizable reconstruction of ready-to-use (i.e. capable
to grow) GEMs. These features make this tool really popular for microbial community modeling starting
from metagenomic data. However, this strategy comes with several drawbacks, which make it not perfectly
suited for generating high quality drafts.

CarveMe is affected by several problems, some of which are consequence of the CarveMe code itself,
others of which are consequence of how the BiGG database is structured (CarveMe is based on BiGG). What
follows refers to CarveMe v1.5.2.

(I) The generated GPRs are sub-optimal. Highly similar genes are not taken into account during the GPR
generation. Moreover, the original protein complex definitions are never checked. You can find more
information at|Issue #180 and Issue #182. Both these issues depend on the CarveMe code itself.

(II) False positive reactions are included. CarveMe produces "FBA-ready" models, i.e. models that grow
out-of-the-box. To accomplish this, a gap-filling step is performed internally, without the option to skip it.
As a consequence, false positive reactions are included, with no associated GPR.

(I1I) Metabolites and reactions are not consistent. This is a problem inherited from the BiGG database.
In BiGG, the same metabolite can appear in different models, with different IDs, different formulas, and
different charges. For example, the cytosolic metabolite indole is encoded in the majority of models with ID
indole, but the model iSynCJ816 encodes it as ind. Since CarveMe uses all the bacterial models available in
BiGG to build its universe, your model in output could contain both ind_c and indole_c. Be aware.

4 MAKE IT GROW: GAPFILLING OF THE DRAFT MODEL

Now that the initial draft model is constructed it still contains gaps in the network that have to be filled.
Gaps need to be filled to either consume or produce metabolites and biomass intermediates. There are
several reasons why the initial draft model reconstruction pipeline did not pick up on the missing reactions.
It is good to understand these reasons as it will help to fill the different gaps within the network. The reasons
might be, but are not limited to, the following: (I) no gene is known for the missing reaction; (II) it is a
non-catalyzed reaction; (III) the gene is already associated to another reaction. Keep in mind that there is

https://www.uniprot.org/
https://github.com/cdanielmachado/carveme
https://github.com/cdanielmachado/carveme/issues/180
https://github.com/cdanielmachado/carveme/issues/182
http://bigg.ucsd.edu/universal/metabolites/indole
http://bigg.ucsd.edu/universal/metabolites/ind

Battjes et al. Genome-scale models are made of this

no need to fill all the gaps in the model. The most important gaps to fill are the ones that we require to get
good predictions of growth and metabolite production or consumption.

4.1 MANUAL GAPFILLING STRATEGIES

To perform manual gapfilling, a good strategy is to pick a metabolite that you want the model to produce
and then track the metabolic route back to where the first gap is found. To do so, the pathway has to be
looked up, or known. This is particularly relevant for secondary metabolites that are organism-specific; in
such a case, one might have to implement completely new pathways leading to the desired product. As an
example, we could consider taurine synthesis pathway (Figure[3), which differs for mammals (shown in the
Figure[3) vs. other classes of organisms.

COOH (o] COOH Sulfinoalanine- 0 Hypotaurine

HS Cysteine dioxygenase g decarboxylase g dehydrogenase g
— ——
NH, +0, HO™ NH, -Co, HO o ""NH, 7 ~ HO™ \(\:)\/\‘rm-u2
H,0 NADH
1 2 3 NAD* 4

Figure 3: Mammalian taurine synthesis from cysteine. Picture taken from Wikimedia Commons.

Ideally, the biochemistry of these reactions (redox carriers, other cofactors) is known, otherwise
one has to make an educated guess. For instance, for many biosynthetic processes, redox cofactors are
NADP*/NADPH, instead of NAD*/NADH. For C; biochemistry, it’s important to discriminate between the
potential C; moiety donors etc.

A good source of data for this process is untargeted metabolomics: you can treat the annotated peaks as
evidence that a metabolite can be transported and/or produced by the metabolic network. Based on the
matrix (cell extracts vs. supernatants/excreted fluids), one might also deduce whether the metabolites can
leave the cell (think of transport processes, see below). Warning for multicellular organisms! When looking
at extracellular fluids, be aware that the compounds might be of microbial origin (local microbiota) or come
from the food/complex diet these organisms receive (in case of sampling tissues that food passes). Consult
literature to determine the origin of these metabolites.

4.2 (SEMI-)AUTOMATIC GAPFILLING STRATEGIES

As with manual strategies, the semi-automatic ones usually rely on custom scripts and imagination.
Here we will consider a case study of model curation where we can speed up the process by setting a loop.

One of the typical issues of curation is cross-compartment transport. This happens largely for two
reasons: first, metabolite exchange reactions (see Section [4.4|for more details) are not transferred from
template models due to lack of GPRs. Similarly, in most models of bacteria, the transport of metabolites
from the extracellular compartment (e) to the periplasm (p) is usually assumed to be passive diffusion
(typical BiGG reaction identifiers end with tex). Next, transport processes usually form a large gap in
our biochemical understanding since determining transport types (facilitated diffusion/active transport),
stoichiometry (coupled transport and the direction of co-substrate transport) and, in many cases, transporter
promiscuity is a headache for experimentalists and theoreticians alike. This translates into models having
very incomplete information and, as a consequence, the model drafting algorithms do not pick up these
reactions "to be transferred" into the new draft model.

To automate the process, one could set up a couple of loops: first, for each metabolite in extracellular
compartment, add an exchange reaction. Then, loop over metabolites in a selected compartment which are
present in another compartment, but do not share a reaction where the stoichiometric coefficients have
opposite signs. In that case there are a couple of options:

« search for transport reaction in the template model or
+ add passive transport reactions Scomp1 «— Scomp2

The next curation strategy is gapfilling to enable the new model to produce biomass from its "typical
diet". One can write a relatively simple routine to do semi-automatic gap-filling to extract the fastest routes
from the template model for individual biomass components to be produced. A good algorithm to do this

10

https://commons.wikimedia.org/wiki/File:Degradation_of_Cysteine_to_Taurine.svg

Battjes et al. Genome-scale models are made of this

would be to create a sink for every biomass constituent in the template model and perform parsimonious
FBA (pFBA) (see Section|[6.1) to obtain a predicted pathway. This sort of gapfilling can be justified if one has a
trustworthy template model, i.e. most of the reactions identified by pFBA are in the target model already.

4.3 FORMULATING (DUMMY) BIOMASS EQUATION

A common objective function for these models is the biomass equation. To make a biomass equation
you need to know the composition of the cell. A biomass equation can have different levels of detail. More
coarse-grained biomass equations (e.g. with classes of molecules rather than details) may need additional
dummy reactions to make that biomass component. At the most basic level the macromolecular content of
the cell is defined (i.e., weight fraction of DNA, RNA, protein, lipid, etc.) in combination with the metabolites
that make up each macromolecular group. Keep in mind that if a compound is not part of the biomass
equation there may be no need to produce it and the corresponding pathway may not be active in your
simulation. As many cells are composed of the same macromolecules, the main challenge is to get the right
associated weight fractions. For that reason you could start with a biomass equation from a related organism
or cell-type and change the weight fractions for your context. It may also be good to know more about the
physiology of your organism/cell. E.g. human keratinocytes make lots of keratine, which may mean high
protein content and a skewing towards specific amino acids. Note that the fractions in the biomass equation
may have a strong influence on the flux distributions. For more reading on the biomass equation, see here
[18].

4.4 ADDING EXCHANGE AND TRANSPORT REACTIONS

Exchange reactions are needed for metabolites that need to enter or leave the cell from the external
space. So far, we have explored the fundamental components of GEMs, consisting of curated reactions
and their corresponding metabolites. Before we can compute and solve these networks, we need to define
boundary conditions for the model. These boundary conditions encompass the fluxes and their associated
metabolites that operate at the "edge" of our model.

One prevalent type of boundary reaction involves the provision or "creation" of metabolites in the extra-
cellular space, known as an exchange reaction. This exchange reaction represents the flow of metabolites
from inside our system to ‘nothing’. The reaction is defined as follows:

Se &= @)
In the case of glucose, the equation will read:
Glucose, (2)

The exchange reactions can carry either a negative or a positive flux, indicating the direction of metabolite
flow into (negative) or out (positive) of our system. Both types of exchanges are essential, as the change in
concentration of all metabolite, including external ones, should be zero to maintain steady state. If there is
no exchange flux (in or out), the metabolite depletes or accumulates (i.e. its concentration changes).

In some (rare) cases, a compound is produced for which no evidence of further conversion or export is
present. This can happen for example in essential reaction for biomass production, where such a compound
is formed as a byproduct. In these cases, a so-called sink reaction can be added to avoid numerical problems.
A sink reaction is essentially the same as an exchange reaction, but the compound is removed from the
intracellular space.

In the SBML file the boundary condition is specified by a Boolean attribute on the Species object. This
attribute determines whether the metabolite can cross the system boundary, i.e., whether it is involved in
exchange reactions with the external environment. However, it is worth noting that sometimes the exchange
reaction can be identified solely through the use of an EX prefix in the identifier. In these cases, the presence
of the EX prefix signals that the corresponding reaction serves as an exchange reaction for the associated
metabolite.

Alongside exchange reactions, another set of reactions has to be created for metabolite transport from
the extracellular space to the cell. Again, using the example of glucose (reversible passive transport, like in
Saccharomyces cerevisiae [19]):

Glucose, < Glucose, (3)

11

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912156/

Battjes et al. Genome-scale models are made of this

Multi-compartment reconstructions will also need transport reactions to get metabolites from one com-
partment to another. Neither type of reaction is typically well-annotated for a given genome, so information
is often obtained from biochemical or physiological evidence. It may be difficult to associate genes to these
reactions (which would have an effect on gene-knockout analyses). This also means that, if constructed
from template models, your draft reconstruction does not contain any exchange reactions and will lack
unannotated transport reactions.

4.5 REPRESENTING THE GROWTH MEDIUM

The representation of the growth medium is an important aspect of genome-scale metabolic modeling.
Like the biomass definition, an accurate medium definition is a prerequisite to get accurate quantitative
predictions out of a GEM. The "environments", or growth media, are represented in GEMs using the exchange
reactions (see Section[4.4). Setting the lower- and upper flux bounds of exchange reactions to non-zero
values means that the corresponding metabolite can enter/leave the system. There are three ways to set the
bounds for exchange reactions, and thus to represent the external environment of a cell. Here, we describe
them in preferential order of use:

1. specifying the experimentally determined uptake and secretion rates;
2. calculating hypothetical maximal uptake fluxes from the substrate concentrations;

3. specifying the concentrations of the available chemical species.

4.5.1 SPECIFYING EXPERIMENTALLY DETERMINED UPTAKE FLUXES The exchange reactions describe specific rates
expressed as mmol/gDW /h, and the maximisation of the biomass assembly will take units 1/h, representing
the maximum theoretical specific growth rate u. As pointed out in the previous section, these fluxes can
represent uptake or secretion, and some of them can be experimentally measured. While water and inorganic
ions are often considered to be non-limiting, exchange reactions for nutrients like carbon sources require
more attention. Given a compound, its uptake/secretion rate is usually organism- and context-specific, so
the experimental conditions to model should be decided with care. Rates are determined at the steady-state,
so the data from a chemostat are simpler to use: given a substrate and a bacteria growing at a dilution rate
D, the specific uptake rate of the substrate can be computed as:

Vuptake = D(Sf — Sr) /X 4)

where D is the dilution rate (1/h), Sy and S, are the substrate concentrations respectively in the feed and
in the bioreactor (mmol/L), and X is the biomass concentration in the bioreactor (gDW/L).

Often, especially when modelling higher eukaryotes, exchange rates are not measured. Then, we want
to limit the capabilities of our model in a different way.

4.5.2 APPROXIMATING UPTAKE FLUXES FROM SUBSTRATE CONCENTRATIONS If an experiment is performed in a
batch culture, as is usually the case for surface-adherent mammalian cells, an estimate of a maximal uptake
flux can also be made. To do this, we need to know, or be able to approximate, the molar amount (usually
mmol; NOTE: not a concentration!) of the growth-medium components (S;); the dry weight per cell (mceu,
usually in gram dry weight, or gDW) and the number of cells the culture (nniriat), or the total dry weight of
the culture (Meen X Ninitiar), when the media was added (t = 0); and the time spent on the batch of medium
before refreshing (z, usually in hours).

Knowing this, we can construct an equation for converting molar amounts of available substrate into
lower bounds for the exchange fluxes (LB;) for each component in the culture:

LB; = -1.0x 5 X 1 (5)
Mcell X Ninitial T

In which the coefficient -1.0 is added in line with the convention that uptake from the extracellular
compartment has a negative flux value. This equation yields a lower flux bound for an exchange function
with with units of mmol/gDW /h (or similar). Note that the exercise of setting a maximal uptake flux requires
two assumptions for each available substrate two main assumptions associated with this calculation:

12

Battjes et al. Genome-scale models are made of this

1. The total cellular dry weight does not decrease over time (neither me.; nor niiriq decrease; cells don'’t
die or lose weight)

« If it did, the size of the denominator would decrease, thereby increasing the magnitude of the
lower bound

+ Note that it is not a problem if the cells grow or multiply, as this would decrease the magnitude
of the lower bound, meaning that the "actual" lower bound would still fall within our specified
range (given the range goes up to at least 0)

2. The component in the growth medium is fully depleted after amount of time

« This assumption is obviously false for most components, since we are interested in a hypotheticla
maximal uptake flux, the maximum is reached when the component is fully consumed.

Also, the modeler should pay attention to which species are forming in solution, like the ions formed from
dissolved salts. For example, if both MgSO, and ZnSO, salts are added to the medium, the bound through
the exchange reaction for the sulphate ion SO/~ should account for both. We normally assume that the
exchange bounds in GEMs come from chemically defined media, but in principle complex media could also
be modeled, if it’s possible to obtain their measured/approximated composition (for example: what is the
amino acid content of 8 g/L of meat extract?). Please see [20] for further reading.

4.5.3 SPECIFYING MOLAR SUBSTRATE AMOUNTS (ADVANCED) The unit of measure of the exchange reactions is
mmol, and the objective value of the FBA - if the biomass assembly is set as objective - will be the amount of
biomass produced in gDW. If the biomass yield (gDW /mmol) is the desired output, divide by the amount of
substrate that was utilized. Since wet-lab liquid media recipes often have components expressed in g/L, it
is necessary to convert them to molar amounts using the appropriate molecular weights (g/mol) and the
volume of the medium (L). Note that we are working with molar amounts, and not concentrations. We
cannot use concentrations because the volume of the cell will determine the intracellular concentration,
so the extracellular concentration cannot be transferred directly to the intracellular concentration. Note,
again, that all sources of the various ions should be considered and that complex media can also be modeled
given certain assumptions, as mentioned above.

5 MODEL CURATION
5.1 CHECKS TO RUN

When the model is (almost) finished, there are some ‘sanity checks’ that should be performed to rule out
some common, but avoidable, mistakes. There are some tools that can help with this.

5.1.1 BLOCKED REACTIONS First, it does not make sense to have a reaction in your model that cannot carry
a flux. We call this a ’blocked reaction’. Before you use your model, you should check whether you have
blocked reactions. Some toolboxes, such as COBRApy, have specific functions to check thiﬂ CBMPy has
a functiorﬂ that finds reactions with only a substrate or a product. If your preferred tool does not have a
specific function, you can run Flux Variability Analysis (FVA, see Section[6.I) on all of your reactions and
search for the ones with minimal and maximal flux of 0. It is good to be aware of these reactions, as they
are either (i) a knowledge gap (unidentified reaction/enzyme missing) or (ii) an artifact. However, in the
latter case we do not need to remove them as they do not carry flux anyways but could do so under other
conditions.

5.1.2 SPONTANEOUS ATP PRODUCTION The next sanity check is for the spontaneous production of metabolites.
The usual routine is as follows: without an external input, the model should not be able to phosphorylate ADP
into ATP and then hydrolyze it (carry non-zero flux through ATP maintenance-like reaction). To implement
this, one should add a hydrolysis reaction

ATP + H,0 — ADP + P; + H* (6)

2cobra.flux_analysis.find_blocked_reactions()
3cbmpy.CBTools.findDeadEndReactions()

13

Battjes et al. Genome-scale models are made of this

set it as optimization objective, and set all the exchange bounds to [0;1000]. If no ATP can be produced from
totally nothing, another check could be opening an exchange reaction for oxygen uptake only (EX_02_e to
[1000;1000]. Some potentially spontaneous generation cycles do not need external carbon but do require
oxygen.

5.1.3 DEAD-END AND ORPHAN METABOLITES Similarly, it does not make sense to have metabolites in your model
that cannot be fully converted. If a metabolite can be produced, but not consumed it is called a ‘dead-end
metabolite’. If a metabolite can be consumed, but not produced, it is called an ‘orphan metabolite’. CBMPy
has a functio to find dead-end and orphan metabolites (both named dead-end metabolites).

5.1.4 ELEMENTAL AND CHARGE CONSERVATION In addition, all reactions in the model should have elemental
and charge conservation. Otherwise, mass could be created/lost in the model, allowing unrealistic/futile
cycles to appear in your model simulations. An example of such a cycle could be an unbalanced reaction in
the human genome-scale model Recon3D|[21] which would spontaneously produce C,H, moieties which
then could be used for ATP production without external carbon- or energy source. Both COBRApyf|and
CBMPyE] have functions to check this.

5.2 SBML FEATURES TO STORE ANNOTATIONS

SBML standard specification has several tools to assist modelers to organize large amounts of information
on different model objects. The completeness of annotations might influence the downstream applications
(e.g. extraction of context-specific models, see Chapter([7), so compiling a comprehensive annotations set
is highly advised. Also, as highlighted later (see Section [5.3), MEMOTE scoring heavily depends on the
completeness of annotations. There are two SBML features to consider: the SBML Groups, and the MIRTAM
annotations. MIRIAM ("Minimum Information Required In The Annotation of Models") is a community
effort to encourage modelers to spend time and effort on the model annotation. Since MIRIAM was created
with interoperability in mind, multiple identifiers (from different sources) can be assigned to the same
object using this format.

For basic annotation of reactions, one can leverage the support of SBML Groups: every object can be
assigned to multiple groups. This is mostly applied to reactions, where we group them in a coarse-grained
manner according to the place of this reaction in the metabolic network (also called "Subsystems"). These
descriptors can be really coarse, e.g. "Central carbon metabolism", or more fine-grained, "Lysine catabolism".
Alongside metabolic functions, typical subsystems in the models are "Exchange/demand reactions" and
"Transport reactions". The best practice here is to keep the subsystems relatively coarse-grained, as it
helps you to group elements that you would like to inspect together. A moderate number of subsystems
might simplify the visualization and interpretation of, for instance, new constraints introduced (# of active
reactions/non-zero fluxes), or generation of context-specific models (omics-driven reduction of metabolic
networks, see below).

The MIRIAM terms (e.g. alternative identifiers) can be added for any model object via addMIRIAMannotation()
routine in CBMPy. It is good practice to label as many things as possible, although complete coverage of
identifiers seems to be the most beneficial for genes and metabolites - and less so for reactions. For every
gene, one should add at least one type of gene identifier: e.g., Ensembl Genome ID, UniProt KB accession
code, NCBI Gene (formerly Entrez) identifier, or NCBI Protein ID. NCBI Transcript IDs are less encouraged,
especially for organisms capable of alternative splicing. The most useful mapping schema for metabolites is
ChEBI| (Chemical Entities of Biological Interest), although alternatives are available.

Next, model objects can be assigned so-called Systems Biology Ontology (SBO) Terms (similar to the
GO Terms), The standard form of these terms is, again, similar to GO Terms, e.g., SB0O:0000627. They
can be added to the model in the same way as other MIRIAM identifiers. Recently, a tool for automatic
assignment of SBO Terms was published, SBOannotator [22], which detects the nature of the reaction
(metabolic/transport/exchange etc.) and assigns SBO Terms accordingly. The presence of these annotations
is also scored in the MEMOTE pipeline, as detailed below.

4cbmpy.CBTools.findDeadEndMetabolites()
5cobra.manipulation.validate.check_mass_balance()
6cbmpy.CBTools.checkReactionBalanceElemental ()

14

https://github.com/SBRG/Recon3D
https://www.ebi.ac.uk/chebi/

Battjes et al. Genome-scale models are made of this

5.3 MEMOTE

MEMOTE [23] is a tool to score how comprehensive the annotations of your GEM are. Since the web
server seems to be discontinued (as of September 2023), the only option left is to install it either from the
GitHub repository or install via pip directly. The method to use from the command line is report, and the
command to run is as follows: memote report snapshot <model.xml>. The tool runs a multitude of tests
to check the consistency of stoichiometric matrix, scores the (completeness of the) annotations, and does
some other sanity checks and tests. However, only the first two items are scored in a final numerical output,
ranging from 0 to 100%. The use of running MEMOTE is not to report its final score in the paper (although
you are welcome to do so), but use it to identify gaps in annotation.

Often MEMOTE is mentioned in publications to showcase the performance of a model. However, the
score of a model checked with MEMOTE consists mostly out of the presence or absence of annotations.

6 RUNNING THE MODEL
6.1 FLUX BALANCE ANALYSIS

The most used application of GEMs is flux balance analysis (FBA). For a concise overview on the back-
ground of FBA, see [4] and the introduction of this text. Alongside the vanilla FBA, many different analyses
based on the principles of FBA exist, and a couple of most used follow-up analyses are discussed below.

PArsiMONIOUS FBA Parsimonious FBA (pFBA) is a routine used in genome-scale modeling to obtain flux
distributions with a reduced solution space. pFBA addresses the problem of obtaining a single flux distribu-
tion out of large solution space which might include fluxes that are not zero but cancel out other fluxes. The
fundamental assumption is that cells minimize the amount of enzymes needed to sustain metabolism, and
therefore carry only the fluxes that they absolutely need, while all other fluxes are kept at zero.

We run two sequential optimizations: first, the usual FBA to obtain the initial flux distribution and the
optimal value of the optimization function. This value is then set as an additional constraint for the following
optimization round: a new linear program (LP) is formed which minimizes the sum of absolute fluxes.
Therefore, pFBA is sometimes also called "FBA with minimization of absolute fluxes".

FLUX VARIABILITY ANALYSIS Flux variability analysis (FVA) is used to determine the minimal and the maximal
value of a flux under certain conditions at the optimal objective function value. This can be used to validate
the uniqueness of your solution.

6.2 SOFTWARE COMMANDS FOR RUNNING FBA

Most previously mentioned software packages have built-in functions for performing FBA.

CBMPY CBMPy has separate functions for the LP solvers it works with (GLPK’|and CPLEXF). These functions
take a CBModel object as an input. In these methods, the method of the solver can be set using the method
argument. See the documentation for the different options. When this function is used, the CBModel object
that was used as input is updated and now contains the information about the optimal fluxes generated.
From this object, the stoichiometric matrix can be easily retrieved using the buildStoichMatrix () function.

COBRA AND RAVEN The COBRA Toolbox uses the solveCbModel () wrapper to perform FBA, and parsimo-
nious FBA can be run using the pFBA() command. For FVA, fluxVariability() wrapper is used. In a
similar spirit to COBRA Toolbox, RAVEN command solveLP() will perform FBA (RAVEN currently contains
no pFBA and FVA implementations).

COBRAPY COBRApy performs normal’ FBA when the model.optimize () function is called. The preferred
solver can be set in general (using the functions in cobra.Configuration()). The optimization function
returns a cobra. core.solution object, from which the fluxes, objective value, shadow prices and reduced
costs can be obtained. It is more difficult to generate the stoichiometric matrix using COBRApy, which limits
some analyses (e.g. matrix rank computation, see Section[7.2). Generally, COBRApy is user friendly to work
with and can generate useful summaries that are well-readable in Jupyter Notebooks.

7cbmpy.CBCPLEX.cplx_analyzeModel()
8cbmpy.CBGLPK.glpk_analyzeModel()

15

https://github.com/opencobra/memote
https://pythonhosted.org/cbmpy/modules_doc.html

Battjes et al. Genome-scale models are made of this

6.3 SENSITIVITY ANALYSIS

Unlike the kinetic models, whose parameter space can be extensively analyzed in terms of the sensitivity
of simulations to the parameter values, stoichiometric models have only a very limited set of follow-up
analyses we can employ to infer the sensitivity of the solutions. These come from the very foundational
theory of linear programming, and therefore bear names which can be easily associated with economics:
(i) reduced costs-, and (ii) shadow prices analysis. In the following paragraphs we’ll provide an intuitive
explanation of these concepts.

Rebuceb cosTs A reduced cost describes how the change of the bound value affects the objective function
value. Normally we consider the fluxes that are at one (or both, in case of equality constraints) of their
bounds for this operation. For example, typically at least an exchange flux is hitting its lower (or upper)
bound in your FBA solution. In such cases, we call the exchange flux at its bound an "active constraint", or, if
the optimization objective is biomass formation, "growth-limiting". Why? To confirm the validity of this
claim you can consider a thought experiment: if you change the flux bounds from the defaults inside the
cell, it is very unlikely the flux distribution will change. Meanwhile, your FBA solution will contain at least
one exchange flux at its bound, and increasing the module of the flux bound will affect your solution (see
Figure [ﬂ, left panel). The reduced costs are actually outputted by the simplex algorithm for every reactionﬂ
and can be obtained alongside the FBA solution.

Mathematically, we define reduced costs as a ratio r; = 5;;’1_”' between the change of the objective function
value 8v,p; and increment of the flux bound for the v;, 6b;. The reduced costs could also be scaled, where we
scale both terms by their original values: rs; = 5;;’1_” %"}j
is the only one limiting growth (sanity check: the objective value increases by the same magnitude as the
limiting flux value).

. If the ry; equals 1, we can conclude that the flux v,

SHADOW PRICES Shadow prices describe the influence of metabolite import on the objective function value.
Imagine a situation where a metabolite which can be used to "ramp up" your objective function value
becomes available in the environment "for free', e.g., adding an additional nutrient to existing growth media
(media supplementation). Then we describe the shadow price (Figure[4] right panel) of the metabolite j as
aratios; = % between the change of the objective function value 6v,,; and the flux value of the "free"
import of metabolite j, v; import-

Reduced costs Shadow prices
Vexh Vobig OVey Vobig v4=0
OVo| A e ‘
Vobj [
- b g Y2 ¢
Vex Vi

Figure 4: The visual interpretation of the reduced costs (left) and shadow prices (right). In the reduced costs
scenario, the maximal flux through exchange reaction v is increased by vy, and the value of the objective flux
Vobj increases by 8vgpj. In the shadow prices scenario, the shadow price for metabolite B is computed by adding a
source flux (v4 in the example) and computing the ratio between the increase of objective flux 6v,,; and the value
of Vg.

9cobrapy: call solution object solution.to_frame(), the reduced costs is one of the columns of the corresponding pandas DataFrame;
cbmpy: use cbmpy.CBCPLEX.getReducedCosts() or compy.CBGLPK.getReducedCosts() method to obtain a dictionary of reduced costs.

16

Battjes et al. Genome-scale models are made of this

7 ADVANCED MODEL HANDLING
7.1 VISUALIZATION OF NETWORKS

Escher [12] is a web-based visualization tool for GEM solutions. In addition, a Python API is available
for visualization, which works well with Jupyter Notebooks. Escher is compatible with COBRApy notations,
while CBMPy results need to be converted first. Basically, Escher takes a combination (dictionary) of reaction
(or gene) names and flux values, and maps it on a vector file with arrows for the correct reactions.

This vector file is the map that is your visualization. For model organisms, such as E. coli, S. cerevisiae and
human, there are template maps available for the central carbon metabolism for some models (ecolicore,
iJO1366, iMM904 and RECONT1). These can be used as a starting point. However, if you use different models
for the same organism, notation might be different for some reactions. Then, the map needs to be adapted.
For different organisms, a new map needs to be created, or for a similar organism, one of the template maps
can be adapted. This is quite a tedious job.

7.2 VERIFYING THE NUMERICAL ACCURACY OF THE SOLUTION

The solution of FBA is determined by the constraints that were imposed, which are often the substrate
uptake rate and the non-growth associated maintenance. Such a solution consists of a linear combination of
a number of elementary flux modes (EFMs), where the number is equal to the amount of active constraints
(for more details and mathematics, see [24]). To check the correctness of the solution, the rank of the active
stoichiometric matrix (S) and the amount of columns can be checked according to Eq. [7l Note that this only
works with the stoichiometric matrix where (i) all reversible reactions have been split into a forward and a
reverse reaction and (ii) the reactions carrying zero flux are removed.

Ncolumns,S = rank(S) + Nactive constraints (7)

Using this approach, inconsistencies that are below the numerical tolerance bounds of the solver (which
are usually 10 for CPLEX by default) can be determined. For example, in E. coli model iML1515 [25], the
biotin uptake bounds are [0, 1000], which means that biotin can only be exported, while it is essential for
growth. Because the stoichiometric coefficient for biotin in the biomass reaction is very low, the solution
often remains feasible. Using this approach, a discrepancy in Eq. [7]will be found.

7.3 SETTING A SUITABLE SOLVER METHOD

On the background of GEM-handling software, a linear program is solved using a certain method. Most
of the time, the (front-end) software used by genome scale modellers, such as cobrapy or cbmpy, is coupled
to another software, such as CPLEX or GLPK (see Section[L.6), that solves the linear program. As linear
programming has been used for decades for very complicated problems, very fast and efficient computing
methods have been developed to solve them. The solution that is found is always a combination of rays
(corresponding to thermodynamically infeasible irreversible cycles in a GEM), linealities (corresponding to
reversible cycles) and vertices (corresponding to a route from a source to a sink metabolite) [26] (Figure[5).
Visually, all possible solutions to a linear program form a polyhedral cone in the flux space. An optimal
solution is always at a cornerpoint [27]; intuitively, if something is maximized (or minimized), it is pushed to
a limit, which you can imagine visually as almost leaving a space, thus it ends up in a corner. The corners
are spanned by the vertices (also see Figure for an illustration).

However, a solution can still be optimal when a combination of vertices (routes from source to sink)
meeting in a corner is used at the same time as a lineality (a cycle). An example of a lineality in a genome-
scale model is back-and-forth transport of a molecule over a membrane without any transportation costs.
This transport can occur with any value up until its bounds, without influencing the objective function value.
However, this is a flux we are not interested in, as it has no effect whatsoever and will only create noise in
our flux distributions. In addition, if you imagine that a cell has a limited amount of proteins it can express,
and the proteins are needed to make such cycles run, it is unlikely that an ‘optimal’ cell has such cycles. Rays
are even more irrelevant as they are thermodynamically infeasible.

So, what can we do practically? Different solvers use different methods to walk around the solution space
toward the optimum. Interior point solvers move through the interior of the solution space, as the name
suggests. This results in a solution that can contain linealities. On the other hand, a simplex solver moves

17

https://escher.github.io/#/

Battjes et al. Genome-scale models are made of this

Vertices Rays Linealities
(optimal flux vector) (irreversible cycle) (reversible cycle)

Figure 5: Visual representation of vertices, rays and linealities. Figure taken from [24].

along the vertices of the solution space. As a consequence, only a combination of vertices can be found as
the optimal solution. Interior point methods are supposedly faster and more efficient than simplex models,
however in practice, it does not make a big difference for GEMs of microbial metabolisms (<5000 reactions).

CBMPy has the option to force CPLEX or GLPK to use a simplex algorithm. This can be done in the
analyzeModel () functions or the doFBA() function, by setting the option method. When using GLPK, set
method="s’, which is also the default. When using CPLEX, there is an option for both a primal and a dual
simplex solver (method="p’ or ‘d’, respectively). However, this does result in a flux distribution with cycles
(linealities), whereas using GLPK does not have this problem. Thus, it is recommended to use GLPK if a true
simplex solution is required. A disadvantage is that GLPK is a bit slower than CPLEX, so when working with
big models, this might become a problem. COBRApy currently does not have an easily accessible option to
choose the solver that is used.

Note. Using a simplex method as a solver yields the same solution as using parsimonious FBA (see Section

6.1).

7.4 CONTEXT-SPECIFIC MODELS

Genome-scale reconstructions contain all of the reactions encoded for by the genome of an organism (as
well as some non-genome-associated reactions). However, only subset of proteins is expressed in specific
cells under a given condition, leading to the development of strategies to restrict GEMs only to the reactions
that are expressed in the cell under study under the relevant conditions [28]. These are referred to as
context-specific models. The process of removing non-relevant reactions while keeping in the relevant ones is
called model restriction or model extraction. Different model extraction methods (MEMs) have been developed,
all of them in the form of algorithms that start with a generic GEM and end with a restricted subset of that
GEM meeting some criteria. The nature of the criteria according to which reactions are removed or retained
is what differentiates different MEMs. Robaina Estevéz and Nikoloski [28] define three families of MEMs,
each named after its first representative:

1. GIMME-like
2. iMAT-like
3. MBA-like

7.4.1 GIMME-LIKE ALGORITHMS GIMME-like (Gene inactivation moderated by metabolism and expression) al-
gorithms solve two LP problems. First, they optimise one (or a set of) Required Metabolic Function(s)
(RMFs, a given production rate of lactate or a given biomass production flux, for instance). All reactions
with insufficient evidence (e.g., expression levels below a set threshold) are removed. The model then
tests whether it can perform its RMFs to a set degree (e.g. 90% of the optimised value). If it cannot, it
systematically reinserts removed reactions. To decide which reactions to reinsert, GIMME calculates an
inconsistency score, which is the product of the flux required through the reinserted reaction and the distance
between the measured expression level and the previously set threshold (threshold — measurement). This

18

Battjes et al. Genome-scale models are made of this

results in a weighted penalty which is minimised to find the most consistent set of reactions to reinsert. This
is the second LP problem. A major advantage is that RMFs constrain the solution space further than the
expression data alone, which has been shown to make for more accurate models [29]. A distinct feature is
the use of flux- and evidence-weighted inconsistency scores, which the algorithm also provides as a report
with the reduced model.

This family includes the original GIMME algorithm itself [30], as well as its descendants, GIMMEp [31],
and GIM3E [32]. GIMMEp allegedly allows for the easier integration of proteomics data, although its imple-
mentation is not well-described. GIM®E allows for the integration of metabolomics data as well assigning
penalty value to all reactions instead of only reactions with expression levels below the threshold. This does,
however, render the second LP problem a MILP problem, which is more computationally expensive.

7.4.2 IMAT-LIKE ALGORITHMS This family, similarly to the GIMME-like family, tries to match the maximal
number of reaction states (active or inactive) with expression data (expressed or not expressed). However,
different to GIMME, the original members of this family did not require pre-set metabolic functions. It
was argued that this is an advantage, as RMFs are optimised and optimisation objectives are tricky to
define, especially in multicellular organisms. Instead, iMAT-like algorithms seek a flux distribution which
maximises the number of reactions with evidence (expression above a threshold) that carry flux above a
certain threshold while minimising the number of reactions without evidence that do. Reactions carrying
flux are retained while those that do not, are discarded. Shlomi et al. [33], who made the first familty-
member, iMAT, justify this intuitively by arguing that not all gene products (mRNA or protein) are necessarily
detected, while detected proteins might be post-translationally inactivated (or detected mRNA might not
form a functional enzyme). The mathematical formulation of this type of algorithm results in an MILP in
which a binary variable (as opposed to GIMME’s weighted inconsistency scores) denotes whether a reaction
should be included or not. The most condordant flux distribution is sought.

As mentioned, the first member of this family was iMAT (integrative Metabolic Analysis Tool [33], named
post facto after an online tool for performing the algorithm [34]). It was followed by INIT (Integrative Network
Inference for Tissues, [35]) algorithms, as well as the descendants of INIT: the task-driven INIT (tINIT, [36])
and the fast task-driven INIT (ftINIT, [37]).

INIT expanded on the logic of iMAT by allowing the designation of metabolites that needed to be
produced. This was done specifically with the multicellular organisms in mind, in which cells often do not
simply optimise growth but rather use their metabolic machinery to produce metabolites for use elsewhere
in the body. The production of these metabolites are not mandated, but positively weighted while the flux
distribution most concordant with the data is sought. tINIT goes further by allowing the user to predefine a
set of metabolic functions that need to be performed alongside the optimisation done by INIT e.g., "regardless
of the data, x amount of biomass needs to be produced from y amount of substrate". ftINIT was developed to
reduce the computational cost of tINIT by reformulating the MILP and splitting network minimisation into
two substeps. This reduced evaluation time by more than an order of magnitude, e.g. by merging linearly
dependent reactions in the optimisation. However, be wary that simplifications could lead to oversights.
The inquisitive reader is referred to the orignal article [37]. INIT, tINIT, and ftINIT are integrated into the
RAVEN toolbox [38], making them quite user-friendly.

7.4.3 MBA-LIKE ALGORITHMS MBA-like algorithms start with an a priori classification of reactions as either
belonging to a core, or not. This core is the set of reactions for which positive evidence was found. This
includes data (transcriptomics or proteomics) as well as literature. Once the core has been defined, these
methods prune the GEM by eliminating non-core reactions while maintaining flux consistency. Flux consistency
is attained when no reactions in the model are blocked (carrying no flux). Another major distinction of
MBA-like algorithms is that they do not return a flux prediction, only a context-specific reconstruction. The
advantage of this family of MEMs is that they allow for the integration or large amounts of evidence and
expert input, which places very useful constraints on the solution space. Reactions for which overwhelming
evidence is available, also from literature, can be forced into the final model. MBA-like MEMs also do
not require RMFs, which means that the problem of specifying a metabolic objective is sidestepped. The
family includes the original MBA (Model Building Algorithm, [39]), mCADRE (metabolic Context-specificity
Assessed by Deterministic Reaction Evaluation, [40], FASTCORE [41], and CORDA Cost Optimisation Reaction
Dependency Assessment, [42].

19

Battjes et al. Genome-scale models are made of this

MBA allows the designation of high-likelihood (Cy) and moderate-likelihood (Cy) core reactions. Cy
cannot be removed, while Cy reactions can be pruned at a penalty. The remaining reactions are non-core
(N¢) and are removed at a benefit to the penalty score. The score is maximised while maintaining flux
consistency. In MBA, the order in which reactions are pruned determines the possible outcomes, so the
process is usually repeated (e.g. 1000 times) and the candidate models aggregated.

mCADRE includes a second type of evidence - connectivity-based evidence which includes proximity to
reactions with high evidence as evidence in and of its self. This is particularly useful for scoring reactions
without (known) gene associations. mCADRE also ranks non-core reactions based on evidence and removes
them in order from least evidence to most. This provides an order to the pruning process, abrogating
the need for multiple iterations. mCADRE also allows core reactions to be pruned (core is flexible) under
certain, limited conditions, and also allows for the designation of key metabolites that must be made by the
restricted model.

FASTCORE also relies on the predesignation of reactions as core or non-core, but then maximises
cardinality through the core while minimising cardinality outside the core. The distinction is subtle, but
important: maximising cardinality means that the number of reactions that can carry flux is maximised
instead of maximising the flux through the set of core reactions. This is a softer objective and allows
decreased computation time.

Finally, CORDA is unique in that it performs a dependency assessment: first, reactions are designated as
high (HC), medium (MC) or negative confidence (NC), or other (OT, no evidence); a pseudometabolite is
added as a product of every reaction in the model, which represents a cost (more undesirable reactions have
higher stoichiometries for this metabolite); the model is initialised with HC reactions, and then MC and
NC reactions are added back as required - all the while minimising the production the pseudometabolite -
to allow the already-included reactions to carry flux; finally, OT reactions associated with any reaction in
the model are added back. The strength of this approach is that is doesn’t require a MILP to be solved, only
FBAs, which reduces computational cost. Since the production of the pseudometabolite is minimised, the
criteria is also softer: a reaction need not strictly speaking be necessary, but it reduces the flux through
undesirable reactions.

7.5 CHOOSING THE RIGHT MEM

The MEM employed by a user will depend on the genome-scale reconstruction to be restricted, the
amount and quality of the available data, the biological expertise of the user, computational power and time
available, and on the ease of defining RMFs. Molversmyr et al. [43] make some interesting observations
on the performance of various algorithms in extracting a salmon liver model from an existing generic
salmon GEM (SALARECON). They observe that iMAT, INIT, and GIMME reduce the model much more than
FASTCORE, MBA, and mCADRE, indicating that the former three make "more context-specific" models.
GIMME had the shortest computation time, followed by FASTCORE, then iMAT, then MBA and mCADRE, and
finally INIT. Finally, it bears mentioning that GIMME was the only MEM to produce models with significant
variance in principal component scores explained by life-stage. Based on the method, the following diagram
from Robaina and Estevéz [28] is a useful summary of the different MEM families (Figure @

7.6 STRAIN-SPECIFIC MODELS

When working with bacteria, we know that different strains of the same species exhibit different phe-
notypes. They may have evolved differently due to geographic isolation, different selection pressures,
horizontal gene transfer events, and so on. GEMs are usually bound to a genome, and thus they are specific
for a particular strain (think about Bas’ Lactoplantibacillus model which was mentioned during the Introduc-
tion: it was made for the strain WCFS1). Therefore, using a GEM built on a different strain from the one you
are studying could yield misleading results.

The strain-specificity of your GEMs is even more important when you are trying to use modeling as a
tool to explore the biodiversity of a species. In this kind of study, you typically have hundreds of strains of
which to produce a GEM (see [44] for one of the earliest examples). This deck of GEMs can subsequently be
used to predict strain-specific auxotrophies, growth-enabling sugars, and so on.

Strain-specific GEMs are usually produced by subtraction, in a way conceptually similar to the restriction
procedures described above. In practical terms, you take a curated GEM as your reference, make a copy

20

Battjes et al.

Genome-scale models are made of this

Y
- distribution? No
v) 4
GIMME-like
MBA-li
IMAT-like BA-Nke
I Yes No 1 Yes
GIMME-like iMAT-like No
\ 4
MBA
mCADRE
Data type Data type
Formulation Mulitiple optima
Platform Transcripts analysis
Transeripts Metabolites Transcripts Automated core
P Proteins Transcripts Metabolites definition?
Matiab MILP Yes Proteins Yes No
Python (GIMPE) No
~L v vlf v v
GIME
GIMME UNIT iMAT INIT FastCORE mCADRE MBA

Figure 6: Optimal choice of methodologies when tackling a context-specific reconstruction problem. The choice
can be made by answering a few questions, in a flowchart manner, related to: demand of model extraction and
flux prediction, knowledge on a required metabolic functionality, the type of experimental data available or the
computational platform. Figure taken from [28].

of it, and then you remove the genes (and thereby the reactions) that are not present in your strain, but
are found in the reference strain. This reference GEM should be representative of the entire species and is
usually built on a pan-genome instead of single genome.

Now, let’s take a few steps back. First we collect some good quality genome assemblies of our strains.
Then we apply the same method for CDS prediction as discussed in Section 2.2} obtaining a proteome for
each strain. Next we compute the pan-genome of the species using a dedicated tool like the established
Roary [45] or similar, providing as input the deck of proteomes. Such tools basically create groups or
clusters of highly similar genes and then select one gene as representative sequence for that cluster (for
example, the fructose-1,6-bisphosphate aldolases of all the strains are grouped together under the same
cluster_0123, and the one coming from the WCFSI strain is selected as representative). These tools usually
return two important outputs: 1) the presence-absence matrix, a table indicating for each strain which
clusters it harbours; 2) a FASTA file with the representative sequences. At this point, we use the representative
sequences to build a GEM that we could call the pan-model, comprising of all the features of our species
and encoding gene clusters instead of the usual strain-specific genes. Of course it must be curated like any
other model, following the principles already discussed in Section 5|

Taking the pan-model as reference, we can create strain-specific GEMs by subtraction as described above,
reading the presence-absence matrix to know which clusters to remove. Finally, we convert (rename) each
gene cluster to the original strain-specific gene names. These last steps can now be automated by recently
developed tools like Bactabolize [46], but be aware that you must provide the reference model yourself. For
more details on strain-specific GEMs generation, refer to the 2019 Nature Protocol Extension [47].

21

Battjes et al. Genome-scale models are made of this

7.7 COMMUNITY MODELS

In addition of single organisms, GEMs can also represent an entire microbial community. These com-
munity GEMs can be of two types:

- bag-of-genes models, where all reactions are grouped in the same compartment, regardless the
organism they belong to.

- compartmentalized community matrix, where each organism is represented as a different compart-
ment.

The first type of model can be generated as any single organism GEM, just using the metagenome as starting
point. Despite their simplicity and high level of approximation, bag-of genes models can be useful to assess
the overall metabolic capabilities of a microbial community.

On the other hand, compartmentalized community GEMs can capture more specific features of microbial
communities, e.g. competition for substrates, cross-feeding, division of labour (subdivision of complex
pathways into multiple organisms), etc. This type of model can be constructed by merging the individual
GEMs of the individual organisms as different compartments in communication with the same extracellular
space.

Constraint-based methods can then be applied to community models, but some additional aspects must
be taken into account. Primarily, the type of objective function to use and the ratio in which each organism
is present in the community need to be decided on.

There are different options for the objective function. One is to optimize the growth of each organism
separately, but at the same time to allow the uptake of the byproducts secreted by the other organisms. This
way can model competition and "costless" cross-feeding of byproducts (see for example [48]).

Another possibility is to set a community objective (typically the sum of the biomasses of all the organ-
isms). This approach allows the modelling of "costly" cross-feeding interactions, but tends to unnaturally
favor the organism with the highest yield on the limiting substrate. This issue can be solved using experi-
mental data (see, for example, [49]), or assuming a balanced growth of the community, as done by cFBA [50]
and SteadyCom [51].

Finally is possible to combine these two options in a bilevel optimization, optimizing individual fitness
first, and then community fitness. This is done, for example, in d-OptCom [52].

8 USEFUL RESOURCES

The Jupyter notebooks are uploaded to a Google Drive, and you can use the Google Colab service to run
them in cloud (press "Open in Google Colab"). Alternatively, download the notebooks to your local machine.

1. Altutorial on how to construct a toy FBA model in CBMPy (originally written for the Basic Models of
Biological Networks course taught at the VU).

2. The|GEM handling tutorial that is usually given to students starting their internships on genome-scale
modeling.

22

https://drive.google.com/file/d/17VylkIq-wgt2sGi8j-ylO1thh8cDB24n/view?usp=sharing
https://drive.google.com/file/d/1vzLptfrkGYal2EfVUqU7QASuGe5aTyGB/view?usp=sharing

Battjes et al. Genome-scale models are made of this

9 DATA TYPES AND INDEX

Table 1: Data used for GEMs, their uses, and where to find information on the data type within this guide.

Data Data type General use Chapter
Get open reading frames (ORF)

sequenced genome of organism(s) FASTA 347.6
Enzyme coding sequences (CDS)

ORF or CDS gff, gbk, fasta Reconstruction of metabolic model 3

GEM xml Metabolic modeling 3

untargeted metabolomics Gap filling 4.1

biomass composition Biomass equation 4.3

13C metabolomics Intracellular fluxes

Expression profiling data Context specific model; model i

(transcriptomics and proteomics) restriction or model extraction

Flux data (uptake and secretion rates) Growth rate prediction 4.5

Yield data Biomass concentration prediction 4.5

Media composition (concentrations) Defining media composition 4.5

23

Battjes et al. Genome-scale models are made of this

REFERENCES

(1]

(2]

(3]

[4]

(5]

[12]

[13]

(14]

(15]

Bas Teusink, Anne Wiersma, Douwe Molenaar, Christof Francke, Willem M De Vos, Roland J Siezen,
and Eddy J Smid. Analysis of growth of lactobacillus plantarum wcfsl on a complex medium using a
genome-scale metabolic model. Journal of Biological Chemistry, 281(52):40041-40048, 2006.

Vincent Somerville, Pranas Grigaitis, Julius Battjes, Francesco Moro, and Bas Teusink. Use and limi-
tations of genome-scale metabolic models in food microbiology. Current Opinion in Food Science, 43:
225-231, 2022.

Pranas Grigaitis. Constrain and conquer: explaining metabolic strategies of microbial life through optimal
resource allocation. Phd-thesis - research and graduation internal, Vrije Universiteit Amsterdam, March
2023.

Jeffrey D Orth, Ines Thiele, and Bernhard @ Palsson. What is flux balance analysis? Nature biotechnology,
28(3):245-248, 2010.

Bas Teusink, Anne Wiersma, Leo Jacobs, Richard A Notebaart, and Eddy J Smid. Understanding the
adaptive growth strategy of lactobacillus plantarum by in silico optimisation. PLoS computational
biology, 5(6):€1000410, 2009.

Brett Olivier, willigott, Douwe Molenaar, and Bas Teusink. Cbmpy release 0.8.4, February 2023. URL
https://doi.org/10.5281/zenodo.7679232.

Laurent Heirendt, Sylvain Arreckx, Thomas Pfau, Sebastidn N Mendoza, Anne Richelle, Almut Heinken,
Hulda S Haraldsdéttir, Jacek Wachowiak, Sarah M Keating, Vanja Vlasov, et al. Creation and analysis of
biochemical constraint-based models using the cobra toolbox v. 3.0. Nature protocols, 14(3):639-702,
2019.

Hao Wang, Simonas MarciSauskas, Benjamin J Sanchez, Ivin Domenzain, Daniel Hermansson, Rasmus
Agren, Jens Nielsen, and Eduard J Kerkhoven. Raven 2.0: A versatile toolbox for metabolic network
reconstruction and a case study on streptomyces coelicolor. PLoS computational biology, 14(10):e1006541,
2018.

Brett G Olivier and Frank T Bergmann. Shml level 3 package: flux balance constraints version 2. Journal
of integrative bioinformatics, 15(1), 2018.

Ali Ebrahim, Joshua A Lerman, Bernhard O Palsson, and Daniel R Hyduke. Cobrapy: constraints-based
reconstruction and analysis for python. BMC systems biology, 7:1-6, 2013.

Philipp Schneider, Pavlos Stephanos Bekiaris, Axel von Kamp, and Steffen Klamt. Straindesign: a
comprehensive python package for computational design of metabolic networks. Bioinformatics, 38
(21):4981-4983, 2022.

Zachary A King, Andreas Dréger, Ali Ebrahim, Nikolaus Sonnenschein, Nathan E Lewis, and Bernhard O
Palsson. Escher: a web application for building, sharing, and embedding data-rich visualizations of
biological pathways. PLoS computational biology, 11(8):e1004321, 2015.

Daniel Machado. A benchmark of optimization solvers for genome-scale metabolic modeling of
organisms and communities. Msystems, pages e00833-23, 2024.

Andrey Prjibelski, Dmitry Antipov, Dmitry Meleshko, Alla Lapidus, and Anton Korobeynikov. Using
SPAdes de novo assembler. Current Protocols in Bioinformatics, 70(1), June 2020. doi: 10.1002/cpbi.102.
URLhttps://doi.org/10.1002/cpbi. 102.

Doug Hyatt, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, Frank W Larimer, and Loren] Hauser.
Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics,
11(1), March 2010. doi: 10.1186/1471-2105-11-119. URL https://doi.org/10.1186/1471-2105-11-119.

24

https://doi.org/10.5281/zenodo.7679232
https://doi.org/10.1002/cpbi.102
https://doi.org/10.1186/1471-2105-11-119

Battjes et al. Genome-scale models are made of this

(16]

(17]

[20]

[22]

(23]

[24]

(25]

[26]

(27]

Sebastian N. Mendoza, Brett G. Olivier, Douwe Molenaar, and Bas Teusink. A systematic assessment of
current genome-scale metabolic reconstruction tools. Genome Biology, 20(1):158, August 2019. ISSN
1474-760X. doi: 10.1186/s13059-019-1769-1. URL https://doi.org/10.1186/s13059-019-1769-1.

Daniel Machado, Sergej Andrejev, Melanie Tramontano, and Kiran Raosaheb Patil. Fast automated
reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic
Acids Research, 46(15):7542-7553, September 2018. ISSN 0305-1048. doi: 10.1093/nar/gky537. URL
https://doi.org/10.1093/nar/gky537.

Adam M Feist and Bernhard O Palsson. The biomass objective function. Current opinion in microbiology,
13(3):344-349, 2010.

Bas Teusink, Jasper A Diderich, Hans V Westerhoff, Karel van Dam, and Michael C Walsh. Intracellular
glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the
glucose transport rate by 50%. Journal of bacteriology, 180(3):556-562, 1998.

Georgios Marinos, Christoph Kaleta, and Silvio Waschina. Defining the nutritional input for genome-
scale metabolic models: A roadmap. PLOS ONE, 15(8):1-17, 08 2020. doi: 10.1371/journal.pone.0236890.
URL https://doi.org/10.1371/journal.pone.9236890.

Elizabeth Brunk, Swagatika Sahoo, Daniel C Zielinski, Ali Altunkaya, Andreas Dréiger, Nathan Mih,
Francesco Gatto, Avlant Nilsson, German Andres Preciat Gonzalez, Maike Kathrin Aurich, et al. Recon3d
enables a three-dimensional view of gene variation in human metabolism. Nature biotechnology, 36(3):
272-281, 2018.

Nantia Leonidou, Elisabeth Fritze, Alina Renz, and Andreas Driger. SBOannotator: a Python tool for
the automated assignment of systems biology ontology terms. Bioinformatics, 39(7):btad437, 07 2023.
ISSN 1367-4811. doi: 10.1093/bioinformatics/btad437. URL https://doi.org/10.1093/bioinformati
cs/btad437.

Christian Lieven, Moritz E Beber, Brett G Olivier, Frank T Bergmann, Meric Ataman, Parizad Babaei,
Jennifer A Bartell, Lars M Blank, Siddharth Chauhan, Kevin Correia, et al. Memote for standardized
genome-scale metabolic model testing. Nature biotechnology, 38(3):272-276, 2020.

Timo R. Maarleveld, Meike T. Wortel, Brett G. Olivier, Bas Teusink, and Frank J. Bruggeman. Inter-
play between constraints, objectives, and optimality for genome-scale stoichiometric models. PLoS
Computational Biology, 11, 4 2015. ISSN 15537358. doi: 10.1371/journal.pchi.1004166.

Jonathan M. Monk, Colton J. Lloyd, Elizabeth Brunk, Nathan Mih, Anand Sastry, Zachary King, Rikiya
Takeuchi, Wataru Nomura, Zhen Zhang, Hirotada Mori, Adam M. Feist, and Bernhard O. Palsson.
iml1515, a knowledgebase that computes escherichia coli traits. Nature Biotechnology 2017 35:10, 35:
904-908, 10 2017. ISSN 1546-1696. doi: 10.1038/nbt.3956. URL https://www.nature.com/articles/nb
t.3956.

Steven M. Kelk, Brett G. Olivier, Leen Stougie, and Frank J. Bruggeman. Optimal flux spaces of genome-
scale stoichiometric models are determined by a few subnetworks. Scientific Reports 2012 2:1, 2:1-7, 8
2012. ISSN 2045-2322. doi: 10.1038/srep00580. URL https://www.nature.com/articles/srep00580.

Frank J Bruggeman, Maaike Remeijer, Maarten Droste, Luis Salinas, Meike Wortel, Robert Planqué, Her-
bert M Sauro, Bas Teusink, and Hans V Westerhoff. Whole-cell metabolic control analysis. Biosystems,
234:105067, 2023.

Semidan Robaina Estévez and Zoran Nikoloski. Generalized framework for context-specific metabolic
model extraction methods. Frontiers in plant science, 5:491, 2014.

Daniel Machado and Markus Herrgéard. Systematic evaluation of methods for integration of transcrip-
tomic data into constraint-based models of metabolism. PLoS computational biology, 10(4):e1003580,
2014.

25

https://doi.org/10.1186/s13059-019-1769-1
https://doi.org/10.1093/nar/gky537
https://doi.org/10.1371/journal.pone.0236890
https://doi.org/10.1093/bioinformatics/btad437
https://doi.org/10.1093/bioinformatics/btad437
https://www.nature.com/articles/nbt.3956
https://www.nature.com/articles/nbt.3956
https://www.nature.com/articles/srep00580

Battjes et al. Genome-scale models are made of this

[30]

[31]

(32]

[33]

(34]

[35]

[39]

[40]

[42]

[43]

(44]

(45]

Scott A Becker and Bernhard O Palsson. Context-specific metabolic networks are consistent with
experiments. PLoS computational biology, 4(5):e1000082, 2008.

Aarash Bordbar, Monica L Mo, Ernesto S Nakayasu, Alexandra C Schrimpe-Rutledge, Young-Mo Kim,
Thomas O Metz, Marcus B Jones, Bryan C Frank, Richard D Smith, Scott N Peterson, et al. Model-driven
multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Molecular
systems biology, 8(1):558, 2012.

Brian J Schmidt, Ali Ebrahim, Thomas O Metz, Joshua N Adkins, Bernhard @ Palsson, and Daniel R
Hyduke. Gim3e: condition-specific models of cellular metabolism developed from metabolomics and
expression data. Bioinformatics, 29(22):2900-2908, 2013.

Tomer Shlomi, Moran N Cabili, Markus J Herrgard, Bernhard @ Palsson, and Eytan Ruppin. Network-
based prediction of human tissue-specific metabolism. Nature biotechnology, 26(9):1003-1010, 2008.

Hadas Zur, Eytan Ruppin, and Tomer Shlomi. imat: an integrative metabolic analysis tool. Bioinformatics,
26(24):3140-3142, 2010.

Rasmus Agren, Sergio Bordel, Adil Mardinoglu, Natapol Pornputtapong, Intawat Nookaew, and Jens
Nielsen. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16
cancer types using init. PLoS computational biology, 8(5):€1002518, 2012.

Rasmus Agren, Adil Mardinoglu, Anna Asplund, Caroline Kampf, Mathias Uhlen, and Jens Nielsen.
Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale
metabolic modeling. Molecular systems biology, 10(3):721, 2014.

Johan Gustafsson, Mihail Anton, Fariba Roshanzamir, Rebecka Jornsten, Eduard J Kerkhoven,
Jonathan L Robinson, and Jens Nielsen. Generation and analysis of context-specific genome-scale
metabolic models derived from single-cell rna-seq data. Proceedings of the National Academy of Sciences,
120(6):€2217868120, 2023.

Rasmus Agren, Liming Liu, Saeed Shoaie, Wanwipa Vongsangnak, Intawat Nookaew, and Jens Nielsen.
The raven toolbox and its use for generating a genome-scale metabolic model for penicillium chryso-
genum. PLoS computational biology, 9(3):e1002980, 2013.

Livnat Jerby, Tomer Shlomi, and Eytan Ruppin. Computational reconstruction of tissue-specific
metabolic models: application to human liver metabolism. Molecular systems biology, 6(1):401, 2010.

Yuliang Wang, James A Eddy, and Nathan D Price. Reconstruction of genome-scale metabolic models
for 126 human tissues using mcadre. BMC systems biology, 6(1):1-16, 2012.

Nikos Vlassis, Maria Pires Pacheco, and Thomas Sauter. Fast reconstruction of compact context-specific
metabolic network models. PLoS computational biology, 10(1):e1003424, 2014.

André Schultz and Amina A Qutub. Reconstruction of tissue-specific metabolic networks using corda.
PLoS computational biology, 12(3):€1004808, 2016.

Hévard Molversmyr, Ove @yés, Filip Rotnes, and Jon Olav Vik. Extracting functionally accurate context-
specific models of atlantic salmon metabolism. NPJ Systems Biology and Applications, 9(1):19, 2023.

Jonathan M. Monk, Pep Charusanti, Ramy K. Aziz, Joshua A. Lerman, Ned Premyodhin, Jeffrey D.
Orth, Adam M. Feist, and Bernhard @. Palsson. Genome-scale metabolic reconstructions of multiple
iescherichia coli/i strains highlight strain-specific adaptations to nutritional environments. Proceedings
of the National Academy of Sciences, 110(50):20338-20343, November 2013. doi: 10.1073/pnas.1307797110.
URLhttps://doi.org/10.1073/pnas.1307797110.

Andrew]J. Page, Carla A. Cummins, Martin Hunt, Vanessa K. Wong, Sandra Reuter, Matthew T.G.
Holden, Maria Fookes, Daniel Falush, Jacqueline A. Keane, and Julian Parkhill. Roary: rapid large-scale
prokaryote pan genome analysis. Bioinformatics, 31(22):3691-3693, July 2015. doi: 10.1093/bioinformati
cs/btv421. URL https://doi.org/10.1093/bioinformatics/btv421.

26

https://doi.org/10.1073/pnas.1307797110
https://doi.org/10.1093/bioinformatics/btv421

Battjes et al. Genome-scale models are made of this

[46]

(47]

(48]

[49]

[50]

[51]

[52]

Ben Vezina, Stephen C. Watts, Jane Hawkey, Helena B. Cooper, Louise M. Judd, Adam W. J. Jenney,
Jonathan M. Monk, Kathryn E. Holt, and Kelly L. Wyres. Bactabolize: A tool for high-throughput
generation of bacterial strain-specific metabolic models. 2023. doi: 10.1101/2023.02.26.530115. URL
http://dx.doi.org/10.1101/2023.02.26.530115,

Charles J. Norsigian, Xin Fang, Yara Seif, Jonathan M. Monk, and Bernhard O. Palsson. A workflow for
generating multi-strain genome-scale metabolic models of prokaryotes. Nature Protocols, 15(1):1-14,
December 2019. doi: 10.1038/s41596-019-0254-3. URL https://doi.org/10.1038/s41596-019-0254-3.

Eleftheria Tzamali, Panayiota Poirazi, Ioannis G. Tollis, and Martin Reczko. A computational explo-
ration of bacterial metabolic diversity identifying metabolic interactions and growth-efficient strain
communities. BMC Systems Biology, 5(1):167, October 2011. ISSN 1752-0509. doi: 10.1186/1752-0509-5-167.
URLhttps://doi.org/10.1186/1752-0509-5-167.

Xiaolin Zhang and Jennifer L. Reed. Adaptive Evolution of Synthetic Cooperating Communities Improves
Growth Performance. PLOS ONE, 9(10):e108297, October 2014. ISSN 1932-6203. doi: 10.1371/journal.pone
.0108297. URLhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108297.
Publisher: Public Library of Science.

Ruchir A. Khandelwal, Brett G. Olivier, Wilfred F. M. Roling, Bas Teusink, and Frank J. Bruggeman.
Community Flux Balance Analysis for Microbial Consortia at Balanced Growth. PLOS ONE, 8(5):e64567,
May 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0064567. URL https://journals.plos.org/plos
one/article?id=10.1371/journal.pone.0064567. Publisher: Public Library of Science.

Siu Hung Joshua Chan, Margaret N. Simons, and Costas D. Maranas. SteadyCom: Predicting microbial
abundances while ensuring community stability. PLOS Computational Biology, 13(5):€1005539, May 2017.
ISSN 1553-7358. doi: 10.1371/journal.pcbi.1005539. URL https://journals.plos.org/ploscompbiol
/article?id=10.1371/journal.pcbi.1005539. Publisher: Public Library of Science.

Ali R. Zomorrodi, Mohammad Mazharul Islam, and Costas D. Maranas. d-OptCom: Dynamic Multi-level
and Multi-objective Metabolic Modeling of Microbial Communities. ACS Synthetic Biology, 3(4):247-257,
April 2014. doi: 10.1021/sb4001307. URL https://doi.org/10.1021/sb4001307. Publisher: American
Chemical Society.

27

http://dx.doi.org/10.1101/2023.02.26.530115
https://doi.org/10.1038/s41596-019-0254-3
https://doi.org/10.1186/1752-0509-5-167
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108297
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064567
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064567
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005539
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005539
https://doi.org/10.1021/sb4001307

	Software for handling GEMs
	PySCes CBMPy
	COBRA Toolbox
	COBRApy
	RAVEN Toolbox
	Handling GEMs in Julia
	Mostly used LP/MILP solvers

	Collecting the data
	Start from scratch: annotating an unknown genome
	Obtaining annotated proteomes
	Selection of template model(s) and proteome(s)

	Reconstructing the draft model
	MetaDraft
	RAVEN Toolbox
	CarveMe

	Make it grow: gapfilling of the draft model
	Manual gapfilling strategies
	(Semi-)automatic gapfilling strategies
	Formulating (dummy) biomass equation
	Adding exchange and transport reactions
	Representing the growth medium
	Specifying experimentally determined uptake fluxes
	Approximating uptake fluxes from substrate concentrations
	Specifying molar substrate amounts (advanced)

	Model curation
	Checks to run
	Blocked reactions
	Spontaneous ATP production
	Dead-end and orphan metabolites
	Elemental and charge conservation

	SBML features to store annotations
	MEMOTE

	Running the model
	Flux balance analysis
	Software commands for running FBA
	Sensitivity analysis

	Advanced model handling
	Visualization of networks
	Verifying the numerical accuracy of the solution
	Setting a suitable solver method
	Context-specific models
	GIMME-like algorithms
	iMAT-like algorithms
	MBA-like algorithms

	Choosing the right MEM
	Strain-specific models
	Community models

	Useful resources
	Data types and index

