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Preface

Since the 2000’s, biology has rapidly evolved into an interdisciplinary science.
This development was largely due to the introduction of key measurement tech-
nologies: genome sequencing, measurement of mRNA, protein and metabolite
concentrations, and fluorescence microscopy. One of the revolutions was that
these measurements gave genome-wide information, so of all the metabolites,
mRNA and proteins in a cell. This in itself led to new questions in cell biology,
regarding the entire cell and how its functioning emerges from the concerted
behaviour of all its molecules. Together these molecules from intricate reaction
networks, described by biochemistry.

These new technologies led to two new subdisciplines in biology that have
an important role to play – bioinformatics and systems biology – and caused
the maturation of another – biophysics. These three disciplines have had an
enormous impact on biological research and thought. That is so, because they
enable a molecular understanding of life that is not only of fundamental interest
bu also required for biotechnological and medical applications.

This small book illustrates, at a basic level, how systems biologists use well-
defined quantitative concepts, basic biochemistry, and simple mathematical
models to study the molecular networks that underlie the phenomena stud-
ied in cell biology. This book is introductory and deliberately kept simple.

This text is part of the course Introduction to Systems Biology and is meant
as an illustration of some of the approaches taken in systems biology. It is not
a complete overview: it is limited to basic analysis of the kinetic properties of
molecules, their reactions and how the properties of molecular networks can be
understood in these terms. Analysis of data generated by large molecular net-
works, of which the structure and molecular players are poorly understood, is not
considered. So, analysis of microarray, proteomics, sequencing or metabolomics
data is beyond this text and logically follows after the focus of this text on the
basics of molecular networks driving cell behaviour.

The Introduction to Systems Biology course also involves a mathematics re-
fresher classes. Mathematics is used throughout this text to illustrate how this
can be useful in addressing molecular and cell biology questions. In case you
experience any problems with the mathematics in the text then discuss your
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Chapter 0. Preface Systems Biology

problem in the mathematics refresher class and ask for additional exercises.

This text is meant as an introduction to the field. So, you are not expected
to be able to carry out all derivations yourself; just try to follow them step by
step. At this stage, it is more important that you experience the approaches,
concepts, and the way of thinking. Systems biology takes time to appreciate
and getting used to.

I encourage you to read the text prior to the classes. Read the text carefully; it
is okay if you do not understand everything immediately. In this way you are
much better prepared for the lectures. Also, do not miss any of the classes! In
the exercise classes, we make exercises together; make sure you participate in
all those classes, because this is when you learn most, by doing it yourself!

Frank Bruggeman, July 2021
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Chapter 1

What is systems biology?

1.1 Characterising systems biology

It is not so straightforward to define a scientific discipline, as scientific disciplines
evolve, merge, and exchange methods. Especially in biology many disciplines
exist such as genetics, molecular biology, biophysics, biochemistry, microbiol-
ogy, cell biology, ecology, bioinformatics, and systems biology. Together they
achieve understanding of biological systems, at all its level of organisation from
molecules to ecosystems. Biological disciplines nonetheless differ, because they
use different methods and ask different questions. They are also often reliant
on one and the other, breakthroughs in one discipline influence developments in
others.

Systems biology arose in the early 2000s, because many scientists started
realising at the same time that understanding of the enormous molecular net-
works that living cells consist of was required. They knew about proteins, genes
and cell behaviours, but how networks of interacting molecules gave rise to these
cell behaviour was, and largely still is, an open problem. Examples of molecular
networks are metabolic, signalling and transcription-factor-gene networks. A
dedicated discipline was needed to study them.

In the early 2000s, and also earlier, several methods were introduced to cell
biology that asked for a network perspective on biological data such as transcrip-
tomics, proteomics, metabolic-flux analysis and genome sequencing. Nowadays
we have even more of those high throughput experimental methods, which give
rise to huge amounts of data that needs to be interpreted and even integrated
with one another. Many systems biologists and bioinformaticians are thinking
about ways to integrate such data sets. Clearly this requires appreciation of
the biochemical mechanisms underlying the activity molecular networks, be-
cause this is how all those different molecules are interlinked in a cell. And, if
we intend to change the behaviour of a cell, e.g. in medicine with a drug or
with genetic engineering in biotechnology, mechanistic understanding is needed,
merely looking at correlations without establishing with bioinformatics methods
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Chapter 1. What is systems biology? Systems Biology

is not enough.
Understanding networks of interacting molecules, from a biochemical mech-

anistic perspective, requires other approaches than those that are required for
understanding of properties of isolated (macro)molecules. It turns out that
approaches from other disciplines are highly useful for understanding of molec-
ular networks. The main ‘cross-feeding’ disciplines are biochemistry, dynamical
systems theory, computer science, control theory and physical chemistry.

Systems biology is therefore an interdisciplinary endeavour that is primar-
ily, not exclusively, focussed on understanding cell behaviour in terms of the
molecular networks of cells and borrows approaches from other disciplines – i.e.
those cites above – to design and make sense of biological experiments. Systems
biology therefore attracts scientists from different areas of research.

1.2 Approaches used in systems biology

The following approaches characterise systems biology research:

1. Dynamics of molecular networks. A characteristic feature of living
systems is that they are dynamic. They sense their environment. Adapt to
changing conditions, rewire their networks, etc.. A key aspect is therefore
to understand how properties of molecules, which define with their inter-
actions, give rise to network dynamics associated with cell functioning.
Many cell-biological processes are dynamic too: such as signal perception,
responses, cell-cycle, structure formation, etc.. We need to understand
those dynamics to better understand the consequence of mutations on dis-
ease development and predict how genetic engineering can improve cells
for biotechnological purposes.

2. Quantitative measurement. Qualitative measurements such as up- or
down, responding or not-responding are not very informative when one
aims to characterise the behaviour of cells in terms of its molecular net-
works or for comparing different of systems. Many systems biology efforts
are therefore focussing on the development of quantitative measurement
methods and the analysis of the resulting data.

3. Understanding the design of molecular networks (‘functions’).
Since molecules interact very selectively with one another – biological net-
works are very sparse – it is of great interest to understand the function of
particular network topological features such as feedbacks, cycles, cascades
and pathways.

4. Mathematical modelling. Simulation of network behaviours using math-
ematical models are indispensable to understand quantitative measure-
ments of molecular-network dynamics and the role of network structure,
Since network dynamics, the outcome of molecular interactions in net-
works, is generally too complicated to work out on paper and on the basis
of static diagrams, mathematical models are extremely useful. They allow
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Systems Biology Chapter 1. What is systems biology?

for the simulation of network dynamics in response to perturbations. Not
in all cases do those models have to be predictive or quantitatively precise.
Often ‘toy’ models are used too, to sharpen the intuition. They help grasp
the essential parameters and features of a particular molecular network.
It is also often the case that this ‘essentialisation’ is what is most useful:
negative feedback, for instance, often serves the same purpose in molecular
networks, regardless of the exact network function or organism. Cells often
exploit the same network principles. Identifying those common principles
becomes problematic when all molecular details are considered. In other
cases, for instance, when a drug target needs to be predicted, predictive
models are useful that are parameterised on experimental data. Thus, the
type of models that is required depends on the scientific question.

5. Theory development. In addition to concrete models, theories turn
out to be useful guides for generating testable predictions and explaining
experimental findings. Since cells of different biological species are con-
fronted with similar problems during their struggles for existence, they
are evolutionarily related, and carry out their functions in a multicellular
context, they turn out to exploit similar network principles. Therefore,
they obey similar regularities that can sometimes be phrased in terms
of testable theories. For instance, theories exist about enzyme kinetics,
metabolic pathway control, robustness of molecular networks, stochastic-
ity of molecular processes, sensitivity of sensing and signalling networks,
and maximisation of growth rate.

6. Evolutionary aspects. Unicellular organisms that live in large popu-
lations – with population sizes of millions of organisms – and grow fast,
can evolve rapidly new properties. Fitter genotypes may then take over
the population and fix. This mechanism shapes the properties of molec-
ular networks such as molecular properties and network wiring according
to an evolutionary objective that natural selection maximises. Evolution-
ary approaches are therefore a powerful method to understand network
design and behaviour, and a new way of thinking about cells to our classi-
cal, more-molecular viewpoint from biochemistry, genetics, biophysics and
molecular biology.

7. Molecular-system constraints, limits and trade offs. Molecular
systems are physicochemical systems constraint by chemical and physi-
cal ‘laws’. Likewise, network behaviours are constrained by the ‘laws’ of
dynamical systems. This means that networks are limited in their be-
haviours. They can, for instance, display trade offs – they can be good
at one function, at the expense of another. For instance, a microbe that
aims to grow fast should spend all most of its protein into metabolism and
translation and, for instance, not on stress proteins as this does not con-
tribute to making new cells. Therefore, a fast growing cell is more stress
sensitive than a slow growing cell. Cells have various solutions to this prob-
lem, one of them is to diversify the population into two subpopulations:
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into one that is stress-sensitive, fast-growing and the other that is stress-
resistant, slow-growing. Theory can then be developed to predict the opti-
mal subpopulation fractions given the probabilities of growth-supporting
and stress conditions. Here models, theories, quantitative experiments
and biology all come together.

1.3 Systems biologists are not pure theoreticians,
but ”Jacks of all trades”

What is often thought is that systems biology are theoreticians. That is a mis-
conception, they are often working in close collaboration with experimentalists,
embedded in experimental labs, and often carry out quantitative experiments.
They are driven by the biological question, and not so much by the mathematical
and theoretical methods for which physicists are generally better suited.

A system biologist is more a ”jack of all trades” and capable of integra-
tive, interdisciplinary research involving different biological disciplines (such
biochemists, oncologists, biotechnologists, medical doctors) and methods (math-
ematical modelling, computational data analysis, basic bioinformatics, genome
sequencing analysis, cell biology in the lab, etc.). See figure 1.1 for an example
of a ”Jack of all trades”.

In simple terms, the difference between systems biologists, computational
biologists and bioinformaticians is that systems biologists want to understand
to understand the biology, for instance how cells work, while computational
biologists and bioinformaticians are more into the data-analysis methods.

1.4 Topics in systems biology

Despite its short existence, systems biology has permeated entire cell biol-
ogy, including microbiology. Systems biologists are, for instance, working on
metabolism, gene regulation (transcription) and signalling; how those are inter-
related and together lead to cell growth and adaptation.

Systems biology turns out to be the long-sought-after ‘glue’ that can link
different biological disciplines to one another and non-biological disciplines. It is
therefore a highly vibrant and innovative field where there exists always a lot of
excitement about new findings and approaches. It is also not the easiest field to
get into – so pay attention to the lectures and ask questions whenever
you can.

1.5 Exercises

1. Read the following two papers:
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Figure 1.1: A ”Jack of all trades”. A ”Jack of all trades” is someone who can
solve many different problems since he knows many basic principles and tricks.

(a) Yuri Lazebnik. Can a biologist fix a radio?—or, what i learned while
studying apoptosis. Cancer cell, 2(3):179–182, 2002

(b) Hiroaki Kitano. Systems biology: a brief overview. Science,
295(5560):1662–1664, 2002

Make a list of all the scientific terms in these papers (and in this syllabus)
chapter, that you found confusing, or do no the meaning of, discuss them
with fellow students or look up their definitions online. Try to formu-
late into your own words what the aim of systems biology are, why its
approaches are different from classical approaches, and why it is needed.
What problems can systems biology now solve that could not be solved
before its inception? (This exercise does not have an answer in the back of
this book. Discuss with colleagues and your exercise group teacher about
this.)

2. Try do define in your own words what is meant with “molecular network”,
“dynamics”, “dynamic model”, “network structuree”, “parameter”, “vari-
able”, “natural selection”, “fitness”, and other terms you found confusing
and unclear in the previous text. (This exercise does not have an answer
in the back of this book. Discuss with colleagues and your exercise group
teacher about this.)
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Chapter 2

Cellular composition and
time scales

2.1 Introduction

In this chapter we will take a “look” at bacterial and eukaryotic cells. We shall
discuss in a nutshell the molecular composition of cells, the rate of movement
of molecules inside them, and the rates of important molecular processes, such
as replication, transcription, translation and the cell cycle. This will give you a
useful perspective on cells: as molecular self-replicating and self-organising sys-
tems, packed with proteins, that display continuous dynamics. These insights
provide a useful mental picture of cells when you think about and try to under-
stand with modern-day experimental methods and theory such as fluorescence
microscopy, proteomics or metabolomics.

A dynamic view on cells is hardly taken in standard biology textbooks. It
is a quantitative view and you will see that basic calculations with quantita-
tive data provide you with insightful information about cell biology. Biology
textbooks often tend to describe cell biology in a more qualitative manner and
emphasise the types of processes occurring in cells, rather than their quan-
titative description. Many useful numbers for cell biology can be found at
http://bionumbers.hms.harvard.edu – in fact I took many of the numbers
used in this chapter from this website.

Systems biology adds a quantitative perspective to cell biology, which allows
you to do basic calculations to figure out aspects of the nature of cells (and even-
tually even make predictive models). You will see that this leads to a powerful
approach to study how cell behaviour arises out of molecular interactions.

7
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Figure 2.1: Artist impression of Escherichia coli with realistic relative
dimensions. David Goodsell has drawn several well-known molecular systems in
cell biology to help biologists envision what such systems are composed of (visit http:
//mgl.scripps.edu/people/goodsell/). If you are unfamiliar with cell biology it is
instructive to read an introductory textbook chapter about cell organisation.

2.2 Cell size and composition

Cells are very small: bacteria range from 0.2 − 3 µm in radius, eukaryotic mi-
croorganisms, such as Baker’s yeast, are about 5 times bigger and mammalian
cells are again 10 times bigger. Since, the volume (V ) is proportional1 to (de-

1The variable y is proportional to x is y = a× x.
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Figure 2.2: A more detailed view of Escherichia coli by Goodsell. Also in
this picture all relative dimensions are realistic. What becomes clear from this picture
is the high protein concentration in cells; the average distance between proteins is
roughly their diameter (10 nm). So, cells are highly packed and proteins diffuse not
in a watery cytosol but in a concentrated protein solution.

noted by ∝) the third power of the radius (r), i.e. V ∝ r3, the volumes of
prokaryotes and eukaryotes vary orders of magnitude2.

A representative protein radius is 5 nm = 5×10−9 m
protein . So, if a bacterium

is 2 µm = 2× 10−6m long then 2×10−6 m
5×10−9 m

protein
= 400 proteins can be aligned to

cover the distance from its left to its right cell pole (Figure 2.1).

The cytosol of a bacterium is packed with protein and it is estimated that
on average, proteins are 1-protein-diameter separated in distance; the protein-
protein distance is therefore about 10 nm (Figure 2.2). A consequence of this
‘macromolecular crowding’ [4] is that, inside cells, diffusion and reactions can be
quite different from how they operate in dilute, watery environments [28]. So,
proteins move much slower inside cells than in pure water and protein complexes
form more easily inside the cell.

Since a bacterial genome can easily be hundreds of time longer than the cell
length (table 2.1), the genome needs to be highly packed and will take up a

2One order of magnitude means a factor of 10.
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Table 2.1: Dimensions (numbers for Escherichia coli, indicative for other bac-
teria)

(Body) Length 2 µm
Volume 1 fl

Genome size 4.6 · 106 bps/genome
Genes 4288 genes/genome

Operons 2584 operons/genome
Intergenic distance 118 bps

Protein radius 5 nm
Chemotactic speed 10− 20 body lengths/s

base pair (bp) length 3.4 angstrom/bp
genome length 1.6 mm = 800 body lengths

considerable fraction of cell volume (Figure 2.1).
Proteins are also found in the cellular membrane – where they function as

signal sensors and transporters – and some are even excreted by the cell to
perform extracellular functions. A single cell contains millions of proteins.

2.3 Exercises

1. In this chapter, we will be doing calculations with units. To practise,
answer the following exercises. Realise that this way of thinking is correct:
2 m3 = 2× (10 dm)3 = 2000 dm3 = 2000 l (l is liter).

(a) 1 m = ... cm, 1 m2 = ... cm2, and 1 m3 = ... cm3?

(b) 1 dm3 = ... l, 1 cm3 = ... l, and 1 nm3 = ... l?

(c) 1 fl = ...µl?, 1 ml = ... l, and 1 µl = ... f l?

(d) 1 mol = ... molecules?, 1 µmol = ... molecules?, and 1 pmol =
... molecules?

2. Assume that the average protein contains 300 amino acids.

(a) How many amino acids should a cell make during its cell cycle when
it contains 2× 106 proteins at birth?

(b) Calculate how many nitrogen atoms occur on average in an amino
acid (use the first table on this Wikipedia page https://en.

wikipedia.org/wiki/Amino_acid).

(c) Given the previous two answers, how many ammonium molecules
(NH+

4 ) should a cell consume during its cell cycle?

10
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(d) How much does that amount of ammonium weigh in femtograms?

3. The length of the DNA of E. coli, a bacterium, is 1.5 mm long, consists
of 4558953 bps, and its DNA polymerase runs at a speed of 800 bps/sec.
How much time does it take for this enzyme to have replicated E. coli ’s
DNA by 50%?

Exercises tips
When answering those exercises you may have realised that working organised
and neatly on a piece of paper works best. In my experience many of you make
a mess of the calculations – they are not organised. Do not do that. Given the
question, write down what information was supplied in the question and what
needs to be calculated. Then formulate a strategy on how you are going to solve
the problem. Only when you find you organise your thoughts, by keeping track
of them on a piece of paper, you work logically and trace back errors that you
may have made. Realise what you have learned! Take your time! Always try
a question first before you ask a fellow student and then ask a teacher. First
process the problem yourself.

2.4 Concentrations of molecules in cells

The volume of a bacterial cell is approximately 1 µm3 = (10−6m)3 = (10−6 ×
10× dm)3 = 10−15dm3 = 1fl (with ”f” meaning femto, 10−15). The volume of
a protein is approximately (5 nm)3 = (125 × 10−9 × 10 dm)3 = 1.25 × 10−22l.
So, if the cytoplasm is completely filled with protein – which it is not, only for
about 40% – then the number of protein molecules per cell would be equal to

10−15 l
cell

1.25×10−22 l
protein

= 8×106 proteins
cell . This we have to multiply with the percentage

of protein volume, say 40%, to obtain 3× 106 proteins
cell . This is a good estimate

when compared to actual experimental data.

Different molecules occur at different concentrations in an E. coli cell. A
molecule that occurs as a single copy per cell has the following concentration:
1 molecule

cell

10−15 l
cell

1
6×1023

mol
molecules = 1

6×108 = 1
6×108

mol
l ≈ 1 nM. Thus, 103 molecules per

cell equals 1 µM , and 106 equals 1 mM . The concentration ranges for classes
of molecules in E. coli are shown in figure 2.3.
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Figure 2.3: Concentrations and number of molecules per cell (E. coli
numbers). Overview of the range of molecule copy number per cell and their con-
centrations given the volume of E. coli of 1 fl. Metabolites are low-molecular weight
molecules that are the reactants of the enzymes in metabolism, such as glucose, pyru-
vate, amino acids, et; thus, the intermediates of metabolic pathways.

2.5 Major components of cells and their synthe-
sis by metabolism

The basic principle of metabolism and cell growth is that the cell doubles its
volume, mass and its entire molecular content during one doubling time (some-
times called the generation time; a cell cycle duration) and then splits into two
identical daughter cells. The doubling time is defined as the time that it takes
for a daughter cell, which has just emerged after a cell division event, to grow
into a mother cell that is about to divide (figure 6.1).

After the doubling time τd we therefore have twice the number of cells (as
one mother gives rise to two daughters):

N(t+ τd) = 21N(t) = 2
τD
τDN(t) (2.1)

with N(t) as the number of cells at time t; thus, N(t + τd) equals the number
of cells τd time later.

12
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Figure 2.4: Overview of cell growth of symmetrically dividing bac-
terium, such as E. coli. After the division of a mother cell two daughter cells
emerge. Each matures, grows, and eventually doubles its volume, mass, and molecular
content at its doubling time at which they become mother cells and divide themselves.

Accordingly, after t time we have had t
τd

doublings; so,

N(t) = 2
t
τDN(0) (2.2)

In biology, the “per-capita” or “specific” growth rate of a cell culture is defined
as µ = ln 2

τd
(such that τd = ln 2

µ ) and, therefore,

N(t) = 2
t
τDN(0) = 2

µ
ln 2 tN(0) = eµtN(0) (2.3)

(The last relation is easy to derive; the statement is 2
1

ln 2 = e. This is correct

because ln 2
1

ln 2 = 1
ln 2 ln 2 = 1 = ln e; so, 2

1
ln 2 = e. In the mathematics class,

these tricks will be explained and trained.)

In other words, equation 2.3 corresponds to ‘exponential growth’: the num-
ber of cells increases exponentially with time. Now we can derive an equation,
which is perhaps more familiar,

d

dt
N(t) =

d

dt
eµtN(0) ⇒

d

dt
N(t) = eµtN(0)µ = µN(t) ⇒

d

dt
N(t) = µN(t) (Exponential growth differential equation) (2.4)

In other words, doubling of cell volume and mass corresponds to exponential
growth.

13
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Nutrients 
glucose, C6H12O6  
ammonium, NH3 
phosphate, PO4 
sulphate, SO4 
oxygen, O2 
trace elements

Central metabolism/
Catabolism 

Energy equivalents 
ATP, NAD(P)H

Nucleotides

Amino acids

Fatty acids

Byproducts 
e.g. CO2, lactate, ethanol

DNA, RNA

Proteins
Lipids 

(membranes)

Anabolism
Rest 
12%Lipids 

9%DNA 
3%
RNA 
21%

Protein 
55%

Weight percentage of cellular components.  
For E. coli with 40 min doubling time at 37℃.  
1 cell (without water) weighs 2.8*10-13 g.

A

B

New cell

C 0.24 C6H12O6 + 0.42 O2 + 0.26 NH+
4 + 0.023 PO3�

4 + 0.006 SO2�
4 !

CH1.59O0.374N0.263P0.023S0.006 + 0.47 HCO�
3 + 0.64 H3O

+

Figure 2.5: The essence of cellular metabolism. Cells are composed of carbon
(C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and some others minor
components (trace elements), such as metals (Fe, Mg, Co). A. So, the construction of
a new cell by a mother cells requires uptake of nutrients that supply those components.
In addition, the mother cells needs to maintain herself, which also requires such nutri-
ents. From nutrients, the building blocks and energy are made in catabolism. Those
are then used by anabolism to synthesise the cell’s macromolecules: RNA, DNA, pro-
teins, and membranes. Eventually, when the mother cell has doubles its volume and
entire molecular content, it divides in two cells to give rise to two daughter cells that
each mature into new mother cells after the so-called doubling or generation time. B.
The percentage contribution of cellular macromolecules to the weight of a single cell.
C. A very coarse grained view on cell growth. Left of the arrow (→) the nutrients are
shown for cell synthesis and right of the arrow the products, including the cell itself
(CH1.59O0.374N0.263P0.023S0.006).

2.6 Metabolism supplies the material for cell growth

Doubling of the cell mass and volume means that the entire cellular content
doubles in amount. A cell therefore has to synthesise its own components to
double them in amount; only then it can divide into two identical daughter cells
(on average). While taking up nutrients and making new molecules out of them
the volume of the cell grows automatically, because molecules take up volume
themselves. Clearly, the largest molecules contribute most to the cell volume
and those are the proteins.

Figure 2.5 indicates the basic principles of cellular component synthesis

14
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Table 2.2: Molecule counts (numbers for Escherichia coli, indicative for other
bacteria)

Elemental composition [2] CH1.59O0.374N0.263P0.023S0.006

Weight of a cell 9.5 · 10−13 g/cell
Dry weight of a cell 2.8 · 10−13 g/cell

Water content of a cell (70%) 6.7 · 10−13 g/cell
Protein content of a cell 156 · 10−15 g/cell

RNA 58 · 10−15 g/cell(82%rRNA)
DNA 8.8 · 10−15 g/cell
Lipid 25.9 · 10−15 g/cell

Lipopolysaccharide 9.7 · 10−15 g/cell
Number of proteins/cell 2.35 · 106 molecules/cell
1 ml OD600 = 1 contains 109 cells

via metabolism. Metabolism can be roughly divided into two processes: i)
catabolism, which converts nutrients into building blocks and energy, and ii) an-
abolism, which converts the products of catabolism into cellular macromolecules:
DNA, RNA, lipids (membranes) and protein. DNA and RNA are composed out
of nucleotides, lipids make up membranes, and proteins are composed of amino
acids.

Since, cells are composed out of carbon (C), hydrogen (H), oxygen (O),
nitrogen (N), sulphur (S), phosphorus (P), and trace elements (metals, vitamins,
etc) they need to take those up and metabolise them into cellular components.

A single E. coli cell has a very, very small weight of about 9.5×10−13 g/cell
(table 2.2). Protein contributes for 55%, RNA for 20.5%, DNA for 3.1%, lipids
for 9.1% and the rest for 12.3 % to the weight of an E. coli cell (figure 2.5).

More than 95% of energy is used for protein synthesis; so protein synthesis
is central to understanding growth and metabolism of bacteria.

2.7 Exercises

1. We will consider exponential growth of cells and how this can become
limited by food supply.

(a) The meaning of dN(t)
dt is that it equals the “rate of change” of N(t)

as function of time t. When you think about this for a moment you
will probably realise that this equals the slope of a plot of N(t) as

function of t. Since it is the slope you can think of dN(t)
dt as being

equal to N(t+dt)−N(t)
t+dt−t – which is after all the equation for the slope of

15
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the N(t)-vs-t plot. Given that dN(t)
dt = µN(t) (with µ as the growth

rate and positive), what happens to the slope in the N(t)-vs-t plot
when t increases? (Does N(t) increase with time? Why?)

(b) When a population of cells grows according to dN(t)
dt = µN(t) new

cells are all the time being made by the existing cells. This requires
nutrients. What happens to the nutrient concentration, denoted by
s(t), over time? How would you mathematically describe the slope
of s(t)-vs-t? Would it have to depend on s(t), N(t) or both?

(c) What is the problem with the following description ds(t)
dt = −kN(t)

with k as a nutrient consumption rate per cell? Why is it impossible?

(d) Eventually, when the nutrients run out, the growth of the population
of cells stops. This can be described by the following differential

equation dN(t)
dt = µ

(
1− N(t)

K

)
N(t) with K as the so-called carrying

capacity (or yield) of the environment.

i. What changes in the equation when we double the amount of
nutrients?

ii. How would you characterise the growth when N(t) is small rel-
ative to K?

iii. What is growth rate of the culture when N(t) = K?

iv. Sketch the dependency of N(t) on t. (If you want actual numbers
set N(t) = 1, K = 1000 and µ = 1 hr−1).

v. What has happened when N(t) = K?

(e) Calculate the generation time of a cell in minutes that grows at a
rate of 1 hr−1.

2. “Numerically solving a differential equation such as dN(t)
dt = µN(t)” means

that the values of N(t) are calculated at different times given a starting

value of N at time zero, denoted by N(0). From the definition of dN(t)
dt it

becomes clear how this can be done.

(a) Write down the definition of dN(t)
dt as the slope of a N(t)-vs-t curve.

(b) Express the value of N at time t+ dt in terms of N at t, dNdt at t and
dt. (We assume that dt has a constant value.)

(c) Calculate N(dt) when µ = 1 hr−1, dt = 0.1 and N(0) = 1.

(d) Calculate N(2dt) given N(dt).

(e) Now use Excel to calculate N(t) as function of time t from 0
to 10. If you are not familiar with Excel do this with a fellow
student or consult http://bmi.bmt.tue.nl/sysbio/Education/

Excel_Euler_simulation.pdf.

(f) Check that the resulting curve obeys N(t) = N(0)eµt.
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(g) Solve also dN(t)
dt = µ

(
1− N(t)

K

)
N(t) numerically, using Excel, when

µ = 1 hr−1, K = 10 and N(0) = 1. Why is this curve and the
previous one you have made the same for small times?

Numerically solving a differential equation
In the last exercise you have used Excel to solve a differential equation. This
is a rather clumsy way, but one that makes it quite clear how differential equa-
tions work and what they mean. Numerically solving of differential equation is
typically done with more suitable software such as “R”, “Python”, “Matlab”,
“Mathematica” or other packages and then it is all more automated. Those
options are not required for this course, but you can use them if you want to.

2.8 Speed of molecule movement inside cells

Molecules move spontaneously through the cell by a process called diffusion –
only at the temperature 0 Kelvin do molecules not move. The diffusion coef-
ficient captures the mobility of a molecule in the cell and be used to calculate
transport times.

1. The interpretation of the diffusion coefficient D. Albert Einstein
discovered that the diffusion coefficient of a spherical molecule with radius
a equals

D =
kT

6πηa
(2.5)

at temperate T in K, and medium viscosity η in kg
m×s with k = 1.38 ×

10−23 J/K (Boltzmann’s constant; https://en.wikipedia.org/wiki/

Boltzmann_constant; 1 J = 1 kg×m2

s2 ), π = 3.14... and the radius a in m.

Let’s figure out the unit of the diffusion coefficient,

D =
kT

6πηa
=
J/K ×K
kg
m×s ×m

=
J
kg
s

=
J × s
kg

=
kg×m2

s2 × s
kg

=
m2

s
(2.6)

Tip
Some of you may have found this derivation hard to follow. This means
that you have to do it yourself on paper and check whether you agree.
Some of you will then have a problem with realising that a

b
c×d

= a×c
b×d .

Since numbers are symbols too, as letters are, you might as well substitute
numbers (the rules are for symbols, not numbers). So is 2

3
4×6

equal to 2×4
3×6?
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It equals 2
3
4×6

= 2
18
4

= 2
4.5 = 4

9 . According to a
b
c×d

= a×c
b×d we could also

have written 2
3
4×6

= 2×4
3×6 = 8

19 = 4
9 . Thus the rule is correct! Many of you

have forgotten about these “high school tricks”.

Consider the equation of the diffusion coefficient again

D =
kT

6πηa

it agrees with intuition: 1. A molecule in a more viscous fluid, e.g. maple
syrup vs water, moves slower: η ↑ ⇒ D ↓., 2. A bigger molecule moves
slower (i.e. it experiences more friction with the fluid): a ↑ ⇒ D ↓.,
and 3. Molecules move faster at higher temperatures: T ↑ ⇒ D ↑.
Statements you will intuitively agree with – I expect.

Thus, proteins move slower than amino acids, ribosomes bound to mRNA
slower than mRNA and ribosomes, etc. A typical diffusion coefficient of a
protein in the cytosol of the cell equals 1− 10 µm2/s [26].

2. Time to travel the length of a cell in distance. The time to move a
distance d for a molecule equals

τ =
d2

6D
. (2.7)

The length of E. coli is 2 µm and a representative diffusion coefficient is

5 µm2

s for a protein. So the time to travel this length in distance by a

protein equals τ = (2 µm)2

6×5 µm2

s

= 4
30 s = 0.13 s.

3. Time for two proteins A and B to find each other. This time is
given by,

τ =
Vcell

4π(DA +DB)(rA + rB)
(2.8)

with Vcell as the cell volume, DA and DB the diffusion coefficients of the
proteins, and rA and rB the (reaction) radii of the proteins. For an E.
coli cell, we arrive at,

τ =
10−15(10−1m)3

4× π × 2× 5× (10−6m)2

s × 2× 5× 10−9m
=

10−18m3

400× π × 10−21m3

s

≈ 1 s

(2.9)
So, it takes a protein 8 times longer to find another protein than that it
takes for this protein to travel the length of E. coli ! In other words, both
proteins have crossed E. coli 8 times before they find each other. (This
also means that when you calculate the time for two proteins to find each
other and you do not take their initial position into account that you make
at most an error of 1

8 × 100% = 12.5%.)
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2.9 Exercises

Diffusion lies at the basis of life. Without it, no movement of molecules would
occur and reactions cannot take place. It also limits life, since molecules cannot
move faster than by diffusion. The speed of reactions involving two (or more)
substrates is therefore limited by diffusion rates.

1. Read the abstract of Klumpp et al. [13]. What limits growth rate in E.
coli according to them?

2. The time for two molecules to find each other in a cell volume is given by
equation 2.8. What do you expect happens to this time – the time when
the first collision occurs – when you have N copies of each molecule instead
of 1 of each? Why does the time decrease when one of the molecules is
bigger?

3. Why is the collision time of two molecules (equation 2.8) lower to the
waiting time for them to form a complex?

4. Calculate how many minutes that it takes for one copy of a transcription
factor with radius 5 nm to find a promoter of a gene. The diffusion
coefficient of the transcription factor is 5 µm2/s. Assume a spherical cell
with a radius of 1.5 µm. Why can you assume that the promoter does not
move?

5. How much slower does a molecular complex move than any of its compo-
nents? (With which factor is the diffusion coefficient reduced?)

6. Why is it advantageous for a cell to construct large complexes on DNA,
rather than forming them first in the cytoplasm and after that having
them bind to the DNA?

2.10 Rates of molecular reactions in cells

Different kinds of reactions occur in cells,

1. Spontaneous degradation or conversion: This means that a molecule
or protein changes its state, structure, or conformation and that a life
time for this molecule can be defined that characterises the time before
this change occurs. If the starting state if called A and the end state B,
we have the following reaction,

A→ B (2.10)

A could be a protein in an active conformation and B in an inactive
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conformation. If the life time of A is τ = 30 s then the rate, k, of A-to-B
state changes is 2 per minute: thus, 1

τ = 2 1
min = k. The ‘k’ constant is

called a rate constant and it characterises the rate at which the conversion
A→ B occurs, per molecule of A. So, we loose A at rate,

d

dt
a = −k × a (2.11)

Here a denotes the concentration of molecule A. We gain molecule B at
rate,

d

dt
b = k × a = − d

dt
a (2.12)

Since the unit of d
dtb is concentration

time , the unit of k should be 1
time .

We can solve equation 2.11 for a(t),

d

dt
a(t) = −k × a(t) ⇒

∫ a(t)

a(0)

1

a(t)
da(t) = −k

∫ t

0

dt

ln a(t)− ln a(0) = −k × t ⇒ a(t) = a(0)e−k×t (2.13)

This result is called exponential decay.

How much time does it take to have half of the starting amount of A
converted into B? In other words, we ask for the time t1/2, which is

defined as 1
2 = e−k×t1/2 , and t1/2 equals ln 2

k . As expected, a higher rate
constant indeed shortens the life time of A molecules.

Life times of proteins can vary from minutes to hours and mRNAs typically
live shorter, several minutes to a few tens of minutes.

2. Spontaneous complex formation: Proteins often bind to other molecules,
such as other proteins or DNA. This corresponds to the following associ-
ation reaction,

A+B → AB (2.14)

The rate at which AB is formed depends on: (i) the concentrations of A
and B, denoted by a and b, (ii) the likelihood that they find each other by
chance, and (iii) their tendency to form a complex when they have collided
– their ‘stickyness’. All of this can be captured in a single rate constant,
which we denote by ka. The rate va at which A and B for a complex is
the same for both as they form a complex together,

va = ka × a× b (2.15)

The unit of ka is 1
concentration×time .

We can also have dissociation,

AB → A+B, (2.16)
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which occurs at rate,

vd = kd × ab (2.17)

Taken together, the change in the concentrations equals,

v = va − vb (2.18)

d

dt
a =

d

dt
b = −v = − d

dt
ab (2.19)

In Chapter 5, we will show that ka can be related to the diffusion coefficient
– a ‘mobility parameter’ – of the molecules A and B. It takes seconds for
single proteins to find each other or a DNA site in a single bacterial cell.
So, such molecular search processes occur quite fast.

3. Catalysed reactions: Reactions that occur in signal transduction and
metabolism are generally catalysed by enzymes (which are proteins). The
rate of an enzyme-catalysed reaction depends on the reactant concentra-
tions and the kinetic parameters of the enzyme. For instance, for the
reaction,

S 
 P (2.20)

the enzyme-catalysed rate of the reaction can be shown to be equal to,

v = Vmax

s
Ks

(
1− p

s·Keq

)
1 + s

K s
+ p

K p

(2.21)

This equation is called the reversible Michaelis-Menten equation and we
will return to it later. Ks, Kp and Keq are constants, the maximal enzyme
rate Vmax is also a constant and proportional to the enzyme concentra-
tion, e, and the intrinsic activity of the enzyme, kcat (the catalytic rate
constant),

Vmax = kcat × e (2.22)

Enzymes can have a kcat of thousands of molecules per second, indicating
that within one second they can catalyse thousands of reactions.

With these values we can calculate the maximal rate of an enzyme in E.
coli that occurs at a concentration of 1 µM and has a kcat of 1000 1

s .
The number of product molecules produced per second in an E. coli
cell equals 1000product moleculesenzyme×s 103 enzyme

cell = 106 products
s×cell . When we cal-

culate this in terms of the concentration of product molecules then we get:

106 product molecules
s×cell

1
6×1023

mol
product molecules

1
10−15

cell
liter60 s

min = 60×10−2

6
M
min =

100 mM
min as the maximal rate of this enzyme. Considering that this en-

zyme will be inhibited by the product concentration p and not always have
excess substrate s ≈ Ks such that the maximal rate cannot be attained;
a more realistic estimate would be 30 mM

min , which is a realistic (but high)
enzyme rate value in central metabolism.
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Table 2.3: Times and rates (numbers for Escherichia coli, indicative for other
bacteria)

genome replication time 40 min
RNA polymerase elongation rate 50 nts/s

ribosome elongation rate 18 aa/s
diffusion coefficient of a protein 1-10 µm2/s

doubling time from 40 min to several hours

2.11 Exercises

1. Consider the following reaction

F + P −⇀↽− FP

with F denoting a transcription factor and P the promoter of a gene.
We will assume that the concentration of the transcription factor greatly
exceeds that of the promoter, which occurs at a single copy per cell. Ac-
cordingly, we assume that the concentration of the unbound, “free” tran-
scription factor is constant. We denote it by fT . The total concentration
of the promoter equals the sum of the concentrations of the free and oc-
cupied promoter, i.e. pT = p + fp. We also assume that pT is constant.
All assumptions made until now are realistic.

(a) Show that the rate of the association (complex formation) reaction
can be written in terms of only one unknown promoter concentration,
choose fp.

(b) Show that the rate of the dissociation reaction can written in terms
of only one unknown promoter concentration, choose fp.

(c) Which rate difference equals dfp
dt ?

(d) Sketch the association rate and the dissociation rate as function of
the concentration of fp. (Make a plot of the two rates as function
of fp, since you do not know the parameter values you have think
carefully about this.)

(e) Can those two rates become equal? What happens then?

(f) Calculate the concentration of fp when those two rates are equal.
Sketch this concentration as function of fT . Does the outcome make
sense? Is it what you would expect?
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Tip: how to sketch functions
You are often asked to sketch a function; for instance, sketch v as function of s,

v(s) = Vmax
s

s+Ks

without knowing the numerical values of the parameters Vmax and Ks. You
may have forgotten how to do this. You have to think about how the function,
which you have to sketch, “works”. You do this be figuring out its value when its
argument – the variable along the x-axis of the plot, which you vary – equals 0
and infinity (denoted by∞). Clearly, v(0) = 0. But what is v(∞)? When s =∞
its value greatly exceeds that of Ks, so lims→∞ s

s+Ks
= 1. Thus, v(∞) = Vmax.

If the function to be sketched was a line – when v(s) = as+ b – we would now
be finished, as only two points fully specify a line. That is now not the case. We
need to know more points than the two we have found so far. Let’s check the
function again. One obvious next point is when s = Ks then v(Ks) = 1

2Vmax.
Now we have three points, and since the function always rises as function of s,
that is enough. Now you can sketch it! Knowing how to sketch functions is a
basic skill in any quantitative science.

Figure 2.6: Overview of some key time scales for bacteria, such as E.
coli.
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2.12 Using the numbers: Cellular growth and
division

1. What is the time required for DNA replication? The genome of
E. coli has 4.6 × 106 base pairs and replication occurs at 600 bp

s starting
in two direction from the origin of replication – a site on the genome
– this means that the time to replicate an E. coli genome amounts to
4.6×106 bps

genome

600 bp
s ×2

= 3833 s
genome , which is ≈ 63 min.

2. How much time does it take to make one mRNA by gene tran-
scription? The average amino-acid length of a protein is 300 amino acids.
Since, each amino acid is encoded by three nucleotides, both on its mRNA
and its gene, the mRNA and gene lengths are on average 900 nucleotides.
RNA polymerases have an elongation rate of 50 nucleotides

s×polymerase . So, it takes
900
50 = 18 s to transcribe a gene and make a transcript.

The number of RNA polymerases that a single gene contains depends on
the initiation frequency of transcription. If transcription initiation occurs
more often than once per 18 s then more than one RNA polymerase can
be expected on this gene.

Interestingly, translation and transcription are coupled in many bacteria.
This means that while the transcript is still being made by the RNA poly-
merase, ribosomes can already initiate translation. So, ribosomes should
not move faster along the transcript than the elongation rate of a RNA
polymerase as otherwise collisions would occur. Ribosomes move at a rate
of 18 aa

s which amounts to 54 nucleotides
sec which is indeed slightly faster

than RNA polymerase, but due to the time delay in translation initiation,
which is a couple of seconds, collisions are not expected to occur.

3. How much time does it take to make one protein from its mRNA?
The average protein length is 300 aa

mRNA and the ribosome elongation

rate is 18 aa
s×ribosome , the time equals 300

18

aa
mRNA
aa

s×ribosome
= 17 s

mRNA . So,

starting from gene induction, the time to make a protein takes at least:
18 s+ 17 s = 35 s.

4. Consider a mutant cell that grows 5% faster than the wild type
cell it derived from. Assume we have 1 mutant cell and 106 wild
type cells. How many generations does it take before an equal
number of mutant and wild type cells is obtained? Thus we ask
for the time t that obeys 1e1.05µt = 106eµt. Now we have to solve for this
time:

ln(1e1.05µt) = ln(106eµt) ⇒ ln(1) + 1.05µt = ln(106) + µt

⇒ t =
ln(106)− ln(1)

0.05µ
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And we know that µ = ln 2/τg with τg as the generation time. So,

t =
ln(106)− ln(1)

0.05µ
=

ln(106)τg
0.05 ln(2)

= 398.6τg, (2.23)

thus the answer is that we have to wait for 398.6 generations. If the
generation time is 1 hr then this means 16.6 days.

2.13 Using the numbers: Protein synthesis and
partitioning

How many ribosomes are required to synthesise all cellular protein? An E.
coli contains about 3 × 106 proteins

cell and this amount needs to be synthesised
within the doubling time of an E. coli cell, the time that it takes for E. coli
to double its content and divide into two cells. Say we want to make 3 × 106

proteins – this is the amount we calculated above for the protein content of E.
coli – in one hour (so, the growth rate equals ln 2 hr−1). An average protein
contains 300 amino acids and ribosomes synthesise proteins at 18 aa/s. So, now
we can ask how many ribosomes are required to attain this protein synthesis

rate: 3 × 106 proteins
hr 300 aa

protein
1
60

hr
min

1
60
min
sec = 3×106×300

60×60
aa
s = 2.5 × 105 aa

s .
This should be achieved by N ribosomes each working at rate 18 aa

s×ribosome . So,

2.5×105 aa
s = N ribosomes×18 aa

s×ribosomes ; therefore, N = 2.5×105

18 ribosomes ≈
14× 103 ribosomes. We know that ribosomes are only 80% active and 20% are
always maturating; so, we expect about 17 × 103 ribosomes

cell when the doubling
time equals 1 hr. Again this is a realistic value.

2.14 Exercises

1. Calculate how many proteins fit in E. coli ’s cell membrane assuming that
their radius is 5 nm. Assume a radius of an E. coli cell of 1 µm. How
many proteins fit in its periplasm if this compartment is 15 nm thick?
What is the ratio of the protein numbers in the membrane and periplasm
over the number of proteins in its cytoplasm?

2. Find the area of the earth and the distance of the moon to earth on Google.
Calculate the time that it takes for a bacterium to cover the area of planet
earth if the bacterium has an area of 1 µm2 and grows exponentially at a
rate of 1 hr−1. How much time does it takes for this bacterium to fill the
distance between the earth and the moon if it is 1 µm thick if all cells are
stacked on top of each other?

3. Stoichiometry of nutrient uptake fluxes during steady-state
growth. The elemental composition of an E. coli cell equals
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CH1.77O0.49N0.24. These elements are components of the molecules mak-
ing up biomass such as DNA, RNA, lipids and proteins.

(a) Calculate the weight of mol of CH1.77O0.49N0.24.

(b) A realistic value for the weight of E. coli cell 0.95 pg = 0.95 ×
10−12gram. How many carbon and nitrogen atoms does a single
E. coli cell contain?

(c) How many glucose and ammonium molecules are minimally required
to make a single E. coli cell?

(d) When growing on glucose in mineral medium E. coli requires 5.9×109

ATP molecules to synthesise one cell. How many glucose molecules
are required to attain this amount of ATP via respiration? How many
via fermentation?

4. The number of proteins made per mRNA. Thinking about transla-
tion is a bit similar to thinking about a conveyor belt that breaks down
quickly. So during the life time of the conveyor belt, during which it carries
boxes from the left to the right, the conveyor belt manages to transport
a number of boxes. Multiple boxes are one the belt, and the distance be-
tween the boxes on the belt is determined by the speed of the belt and the
times between consecutive placements of boxes onto the belt. If boxes are
placed on the belt at a higher rate then boxes are closer to one another
and if the belt runs slower the boxes are also closer to one another. A
box resembles a ribosome and the moving belt corresponds to a ribosome
walking over mRNA. The distance between ribosomes is determined by
the translation initiation rate and the moving rate of ribosomes. The life
time of the mRNA correspond to the operating time of the conveyor belt
before it breaks down and stops working.

(a) Say a ribosome produces peptide chains of a length of 20 amino acids
per second. How many mRNA nucleotides does it pass in a second?

(b) What is the distance in nucleotides between neighbouring ribosomes
on the mRNA if every two seconds a new ribosome hops into the
mRNA?

(c) If every two seconds a ribosome hops on to start translation at steady
state, what is time period between ribosomes leaving the mRNA
transcript?

(d) What is then the protein synthesis rate?

(e) What is the protein synthesis rate if two such mRNAs occur?

(f) If an mRNA lives 16 seconds how many proteins are made from it?

(g) Is the rate set by the elongation rate or the initiation rate in this
exercise?
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2.15 Extra Exercises (Tougher than exam ques-
tions!)

1. Transcription and translation data in human cells. In
Schwanhäuger et al. [20, 19], the number of mRNA and protein copies
per cell for more than 5000 genes of a human cell line is reported. The
analysis of this data gives insight into the steady-state rates of transcrip-
tion, mRNA degradation, translation, and protein degradation. This is a
very insightful paper about the levels of thousands of gene products in a
cell.

(a) Assume a volume of 1800 µm3 of an average human cell, which
is realistic value. Calculate the mean concentration of the mRNA
and protein in human cells given their mean number per cell:
17 mRNA molecules

cell and 50000 protein molecules
cell .

(b) The median translation rate is 180 proteins
mRNA×hour . Consider the mean

number of mRNA and protein molecules per cell and calculate the
degradation rate constant of protein.

(c) Calculate the mean transcription rate, given a mean mRNA half life
of 9 hr and a mean mRNA concentration of 17 transcripts

cell .

(d) Why do you think that the most stable mRNAs and proteins are
involved in translation, respiration and central metabolism?

2. Transcription and translation data in E. coli . Taniguchi et al. [24]
report data on 137 mRNAs and their cognate proteins. The mRNA
number ranges from 0.05 − 5 transcripts

cell and the protein number from

0.1− 5000 proteins
cell .

(a) How can a cell contain on average 0.05 mRNA molecules?

(b) Assume a volume of 1 fl per cell and calculate the concentration
ranges of mRNA and protein.

(c) They found that essential proteins tend to have higher expression
levels than nonessential proteins. Why does this make sense?

(d) Do you think that a mother cells that divides and contains nine
mRNA molecules will divide those evenly over its daughter cells at
cell division? Consider 5 identical mothers cells with 10 molecules
each. Do you think that division of those molecules at division over 2
daughter cells will always occur in such a manner that each daughter
gets 5 molecules? What kind of statistics does molecule partitioning
during cell division follow? (Hint: will you obtain 5 heads and 5 tails
each time when you flip a coin 10 times?)
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3. Spontaneous genetic variation and competing bacteria. Genetic
variation occurs spontaneously in bacterial populations because copying
errors are always made during replication. This leads to the spontaneous
generation of mutants in bacterial populations that have slightly differ-
ent properties. Some of those mutants are better adapted to the current
environment, purely by chance. Those mutants will outgrow the resident
population and can overtake the entire population such that their geno-
type becomes the dominant one at the expense of the resident genotype.

We define the mutation probability as,

p = probability for a single base pair change in DNA (2.24)

Let’s apply some elementary probability reasoning to make some inferences
about mutation and selection.

(a) What is expected genome size with a single base pair change?

(b) What is the expected number of mutations in a genome of length N?

(c) What should be the population size of bacteria with genome length
N that contains all single mutations?

(d) Bionumbers tells us that a E. coli culture at OD600 = 0.1 contains
108 cells

ml . Take as the mutation rate 10−10 mutations
nucleotide×generation (Lee,

..., Foster, PNAS, 2012). What is the expected OD600 of a 1 ml
culture to contain all single mutations?

Given these numbers, we conclude that during serial-batch evolution ex-
periments should therefore quickly sample all single mutations, as they
involve growth experiments in shake flasks of 100 ml that are grown to
OD600 = 1, diluted by a factor of 10, regrown in a new flask to OD600 = 1,
which repeated for 100s of times.

2.16 Key messages of this chapter

1. Many quantities are known for biological systems that are useful to make
estimates of cellular properties using quite straightforward envelope cal-
culations.

2. Many of those quantities can be found at http://bionumbers.hms.

harvard.edu.

3. Careful usage of units of quantities allows you to construct simple equa-
tions for the calculations of insightful cellular properties.
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4. Basic knowledge of physics and biochemistry is often enough to make
useful approximations.

5. Thinking about cells from a quantitative perspective can give rise to new
ideas, aid in experimental design and often indicate the relevance and
feasibility of biological hypotheses.
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Chapter 3

Kinetics of biochemical
reactions

3.1 Reactions between molecules are the basic
processes of life

Understanding how the molecules inside cells bring about cellular behaviour
requires understanding of cellular activities in molecular terms such as signal-
ing, metabolism, and gene expression. Typically, tens to hundreds of proteins
are involved in those cellular activities. Those proteins may act as enzymes,
catalysing reactions, or may have constructive roles; for instance, actin plays a
role as a monomer in the cytoskeleton, nucleosomes wrap DNA, or specific pro-
teins make up a microorganism’s flagellum (the propellor that microorganisms
use to move through fluids).

Proteins carry out their roles by interacting with other molecules, by form-
ing complexes, or by catalysing conversions. These fundamental activities of
proteins can be quantitatively described in terms of their kinetic properties.
This means that the behaviours of a cell are ultimately the consequence of the
kinetic properties of all its molecules! Those kinetics properties relate in a very
complicated manner to the DNA sequence of the gene coding for this protein;
even though this relationship is understood in principle, we are still not able to
calculate the consequences of individual gene mutations for the kinetic proper-
ties of the associated protein. So, genome sequencing alone is insufficient for
understanding the working of a living organism.

In this chapter, we will study how we can quantitatively describe reaction
rates in terms of kinetic equations, and how those rates bring about changes in
the concentrations of these molecules, giving rise to dynamic cellular activities.
We will limit ourselves to uncatalyzed reactions and postpone the discussion of
enzyme kinetics.

The kinetics treated in this chapter is the basic toolkit for modelling of
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complex molecular systems in living cells, such as enzymes, protein complex
formation, metabolic pathways, gene expression and signaling networks. With
this toolkit, you will already be able to understand the principles of a whole
range of unexpected and sophisticated behaviours of molecular systems. We
will first focus on the basic theory of mass-action kinetics in this chapter.

3.2 The quantitative description of molecular re-
actions

3.2.1 Mass balances

We will assume throughout this chapter that we can describe the reactions
between molecules without having to consider the diffusion of molecules, spatial
organisation of the cell and the inherent stochastic aspects of reactions. Some
of those aspects will be considered in later chapters. These assumptions turn
out be warranted in most of the cases, so not much generality is lost by making
them.

What kind of reactions exist between molecules? The basic interaction be-
tween two molecules is that they can form a complex. This molecular complex
can then fall apart after some ‘life’ time. The concentrations of the two molecules
and the complex change upon the formation of the complex or its dissociation.
How fast those concentrations change will depend on the rate of these two reac-
tions, i.e. how quickly those molecules find each other and form a complex and
how stable the resulting complex is.

If multiple reactions occur, the change in the concentration of a specific
molecule depends on the net synthesis rate and the net degradation rate of this
molecule. This means that if we account for the rate of all reactions that a
given molecule plays a role in, as a substrate or product, we can determine the
net change in the concentration of this molecule. This calculation resembles
‘molecular accounting’.

A natural approach to accounting is to make us of balances – as you do
when managing your bank account. Here we do not deal with money but with
numbers of molecules, e.g. expressed as a concentration. (A concentration is just
the number of molecules in a volume, and if the volume remains fixed, changes
in the concentration are only due to changes in the number of molecules.) Since
you can count molecules in the same way as euros or dollars, the same principles
apply to molecular and financial accounting.

Thus, setting up a mass balance is a natural approach to molecular account-
ing and the same principles apply as when you manage your bank account.
You keep track of the number of molecules (analogue: ‘euros’ or ‘dollars’) pro-
duced and consumed of a given species (analogue: ‘currency’), and the differ-
ence between those rates gives the net rate of change in the concentration of
the molecule at a given moment in time. Let’s write this down in mathematical
terms.
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We consider a molecule, X, with concentration, x, which is for instance
expressed in terms of millimolar, mM . The concentration is defined as the
number of molecules of X, nX , divided by the volume, V , of the system it is in,
e.g. the cell: x = nx

V . Because we assume the volume to be fixed, the changes
in the concentration are only due to the changes in the number of molecules,
due to the activity of reactions.

The rate of change in the concentration, x, is denoted by dx/dt. One can
think of dx/dt as the slope in a figure where the concentration x is plotted as
function of time, t. If at a certain moment in time dx/dt is positive then the
concentration rises, if it is negative the concentration drops and if it is zero, the
concentration remains constant.

The value of dx/dt at a certain time t equals the difference between the net
rates of synthesis and degradation at this time, vsynth(t) and vdeg(t), of this
molecule X with concentration x,

d

dt
x(t) = vsynth(t)− vdeg(t) =

∑
i

vi,synth(t)−
∑
j

vj,deg(t) (3.1)

The net rates of synthesis and degradation equal the sum of the synthesis and
degradation rates. For every variable molecule concentration in the system of
interest such an equation can be defined. Here we have explicitly indicated that
the concentration and the reaction rates depend on time but we will often omit
this notation. The symbol

∑
means that we take a sum of values; for instance,

1 + 2 + 3 + 4 + 5 =

5∑
i=1

i

y1 + y2 + y3 + y4 + y5 =

5∑
i=1

yi

Therefore,
∑
i vi,synth(t) means the sum of all the synthesis rates of X at time

t.
If we choose concentration units in mM and time units in minutes, the

units of rates are defined. The units of the two rates then necessarily have to
be mM/min, as the units at the right and left hand side of the equation always
have to match. The two rates can depend on concentrations of other molecules
besides X, this dependency is given by a rate equation, which can either derive
from mass action or enzyme kinetics. Mass action kinetics will be studied in
this section and enzyme kinetics in a next chapter.

3.2.2 Mass-action kinetics

Mass action kinetics applies to uncatalyzed reactions, so-called ‘spontaneous
reactions’, reactions that do not require an enzyme as a catalyst. Intra-enzyme
reactions, e.g. in the catalytic site, are also described by mass-action kinetics.

Setting up a rate equation for mass-action kinetics for a reaction involves
very intuitive rules. For instance, for the isomerization reaction, S 
 X, the
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net rate of synthesis of X depends on the concentration of S, of X, the intrinsic
rate constant for isomerization, k+ and a similar rate constant, k−, for the
isomerization of X into S, i.e. the backward reaction. The reaction rate, v, is
then given by:

v = k+s− k−x (3.2)

If the unit of the reaction rate is expressed in terms of mM/min, the unit of
the concentration needs to be mM and the unit of the rate constants are then
necessarily min−1.

The reversibility of the reaction dictates that the rate can also be negative,
i.e. such that S is produced from X. The terms k+s and k−x are referred to as
the forward and the backward rate of the reaction. The rate constants k+ and
k− are sometimes called elementary rate constants. They are first-order rate
constants because the rate depend to first-order on the concentration, i.e. on x
and not on x2.

The reaction is said to be in ‘thermodynamic equilibrium’ when v = 0, then
x
s = k−

k+ .
Now suppose that the molecules X and Y form a complex: X + Y 
 XY .

The rate of this reaction is described by,

v = k+ · x · y − k−xy (3.3)

Confirm that: the unit of the rate constant k+ should now be min−1mM−1.
This rate constant is an example of a second-order rate constant, as its asso-
ciated rate depends on the concentration to second order, i.e. x · y. Following
this logic: a third order rate constant is then involved in X + Y + Z 
 XY Z
and would have unit min−1mM−2. A zeroth order rate constant is then asso-
ciated with the reaction → X, this may look weird, because X appears out of
nothing, but this is often used as a shorthand notation when we do not want to
be bothered with the substrate(-s) of the reaction. For convenience we subsume
this information into the zeroth-order rate constant, which now has mM/min
as unit. Obviously, a first-order reaction means X → Y and has a rate constant
with min−1 as unit.

For the reaction, X +X 
 X2, we would obtain for the rate of synthesis of
the complex the following rate equation,

v = k+x2 − k−x2 (3.4)

The dissociation rate is given by −v.
Some of you may have spotted the logic be now: in general, we obtain for

reactions such as,

n1X1 + n2X2 + ...+ nsXs 
 m1Y1 +m2Y2 + ...+mpYp (3.5)

the following rate equation for the reaction,

v = k+
s∏
i=1

xnii − k−
p∏
j=1

y
mj
j (3.6)
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The symbol
∏

means product,

1 · 2 · 3 · 4 · 5 =

5∏
i=1

i

Z1 · Z2 · Z3 · Z4 · Z5 =

5∏
i=1

Zi

(3.7)

Consider equation 3.6 again, it indicates that per unit time m1v molecules
of Y1 are made, and miv molecules of Yi. Note that the mi can be positive or
negative depending on whether molecules are produced or consumed, respec-
tively.

There is one more thing to remember. Whenever a molecule is consumed
or produced multiple times in a single reaction, such as 2X 
 X2, then the
’2’ in front of X is called a stoichiometry coefficient and needs to be taken into
account in the mass balance for x. This is easy to understand: per unit rate
2 molecules of X is consumed. Therefore, the rate of the degradation of X is
twice the rate of the production of X2, which occurs at a rate v. We would
obtain in this case for the mass balances of X and X2,

dx

dt
= −2(k+x2 − k−x2) = −2v

dx2

dt
= k+x2 − k−x2 = v (3.8)

as two molecules of x are consumed per unit rate, which occurs at speed v =
k+x2 − k−x2. Here the rate is defined as the dimerization rate.

One more important aspect of the reaction 2X 
 X2 is that the total
amount of molecules of X remains fixed in this case: no molecules are lost; they
are only interconverted. Thus, we expect the following relationship for the total
concentration of X: xT = x+2x2. The concentration xT just equals the amount
of molecules that the system started with at time zero and remains fixed over
time: xT = x(0)+2x2(0) = x(t)+2x2(t). This means that the consumption rate
of x equals twice the production rate of x2 and therefore 0 = dx/dt + 2dx2/dt
and −dx/dt = 2dx2/dt and this is true because dx/dt + 2dx2/dt = −2v + 2v
(see equation 3.8)! These tricks we will apply very often to reaction systems.

3.2.3 Exercises

1. Determine the mass balances and mass action kinetics for the following
molecules and reactions. An underlined molecule indicates that it has a
fixed concentration.

(a) S 
 X 
 P

35



Chapter 3. Kinetics of biochemical reactions Systems Biology

(b) S 
 X 
 P

(c) 3A
 2B + C, B 
 2D , 2C 
 3E

(d) XY + Z 
 XY Z, XY Z 
 X + Y Z, Y Z 
 Y + Z

2. Determine from these sets of mass balances the reactions,

(a) de
dt = −k+

1 e · s+ k−1 es+ k+
2 es− k−2 e · p, desdt = k+

1 e · s− k−1 es− k+
2 es+

k−2 e · p, dsdt = −k+
1 e · s+ k−1 es,

dp
dt = k+

2 es− k−2 e · p
(b) dx

dt = k+
1 a · x2 − k−1 x3 − k+

2 x+ k−2 b

(c) dx
dt = k+

1 a− k−1 x+ k3x
2 · y, dydt = k2b− k3x

2 · y
(d) dx

dt = v1−v2,
dy
dt = v2−v3,

dz
dt = 4v3−v1−v2−v4 This is fact a simpli-

fied representation of glycolysis with X glucose-6p, Y as fructose1,6-
phophate and Z as ATP. What should be the substrate of reaction 1
and the product of reaction 3?

3.3 Linear growth

We consider the following reaction,

k−→ X, (3.9)

where X can be mRNA molecules produced during transcription, with x as the
mRNA concentration. The associated mass balance equals,

dx

dt
= k (3.10)

So, per unit time we always gain the same number of mRNA molecules, assuming
that the volume remains fixed. In other words, the slope in the plot of x as
function of t, i.e dx/dt, remains fixed: so, we x depends linearly on t! Therefore,
x grows linearly with time. We could also have concluded this by solving this
differential equation, ∫ x(t)

x(0)

dx =

∫ t

0

kdt

⇒ x(t)− x(0) = kt

⇒ x(t) = x(0) + kt (3.11)

(See Figure 3.1.) This equation allows you to calculate the mRNA concentration
as function of time when you know how many you start with and what the
transcription activity, k, is.
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3.4 Exponential growth

Now, we consider autocatalysis. For instance, a cell making a copy of itself – it
grows and divides – and per cell we have a certain rate of synthesis of new cells.
If the rate of cell synthesis per cell equals k then with nx cells in a constant
volume, V , the number of new cells formed at a given moment in time equals
knx, and in terms of concentration kx. At a next moment in time we shall have
more cells and therefore the synthesis rate of new cells is also higher. This is
reflected in the associated mass balance for x,

d

dt
x = kx, (3.12)

indicating that the slope of x as function of t increases with x. We can solve
this equation by hand, ∫ x(t)

x(0)

1

x
dx =

∫ t

0

kdt

⇒ lnx(t)− lnx(0) = ln
x(t)

x(0)
= kt

⇒ x(t) = x(0)ekt (3.13)

(See Figure 3.1.)
How much time does it take to double the number of organisms?

x(t)

x(0)
= 2 = ektd ⇒ td =

ln 2

k
(3.14)

with td as the doubling time. In other words, we have,

nx(td) = 21nx(0)

nx(2td) = 21nx(td) = 22nx(0)

nx(3td) = 21nx(2td) = 22nx(td) = 23nx(0)

....

nx(gtd) = 2gnx(0) (3.15)

with g as the number of doublings or ‘generations’.

3.5 Exponential decay

Protein complexes play a fundamental role in cells, for instance in signalling
and gene expression. The functionality of a protein complex is limited by its
life time, i.e. the time when it falls apart. So, a natural question to ask is:
what determines the life time of a protein complex? The life time of this protein
complex can easily be determined, because we only have to consider the following
mass balance,

dx

dt
= −kx (3.16)
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Solving this equation gives, ∫ x(t)

x(0)

dx

x
=

∫ t

0

−kdt

lnx(t)− lnx(0) = −kt

ln
x(t)

x(0)
= −k · x

x(t)

x(0)
= e−kt (3.17)

(See Figure 3.1.) Thus, 50% of the complex has been degraded when 1
2 = e

−kt 1
2 ,

which gives rise to a half life time of ln 2
k = t 1

2
. And after t = 1/k time the ratio

equals x(t)
x(0) = 1/e ≈ 0.37; thus, about 2/3 of the complex has been degraded;

this time is often called the characteristic time. The characteristic time is the
most relevant time as it corresponds to the average life time of an system of
identical molecules that decay by a first-order process.

Figure 3.1: Linear growth, exponential growth, and exponential decay.
Here we plot the following functions: linear growth x(t) = 1 + 2t, exponential
growth x(t) = 3e0.5t, and exponential decay x(t) = 18e−2t.

3.6 Zeroth-order synthesis and first-order degra-
dation

Clearly, the following models has broad applicability,

k1−→ X
k2x−−→,

dx

dt
= k1 − k2x (3.18)
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using your basic math skills you can solve this equation and obtain,

x(t) = x(0)e−k2t + (1− e−k2t)k1

k2
(3.19)

We also know that when dx/dt = 0 that x = k1
k2
≡ xs with xs as the steady

state concentration of x, it will become clear in a moment what this means, so
now have,

x(t) = x(0)e−k2t + (1− e−k2t)xs. (3.20)

Analysing this equation we conclude that,

1. When you set the time to 0 then you obtain x(t = 0) = x(0), like you
should,

2. For very large times (t → ∞, or t >> 1/k2) then x(∞) = xs. So, the
system eventually attains a steady state where: i. dx/dt = 0, ii. x = xs,
and iii. k1 = k2xs,

3. when k1 = 0, you get x(t) = x(0)e−k2t indicating exponential decay,

4. when x(0) = 0 then the system simplifies to x(t) = (1 − e−k2t)xs, which

indeed gives x(0) = 0 and x(t)
xs

= 1
2 = 1 − e−k2t1/2 and t1/2 = ln 2

k2
. So,

the half time for a system starting in a zero state is determined by the life
time of the molecule X, so by 1/k2! And, not by the synthesis time! This
is important to remember. It is very simple to understand, when we fix
xs and make k2 higher than indeed the time to reach xs shortens, because
we have to increase k1 as well to reach the same steady state, xs, because
xs = k1/k2!

So, we can give the main equation an interpretation,

x(t) = x(0)e−k2t︸ ︷︷ ︸
Exponential decay

of initial concentration

+ (1− e−k2t)xs︸ ︷︷ ︸
Combined synthesis and degradation

and eventually xs is reached

. (3.21)

This equation also tells you something else: regardless of the initial condition,
the steady state xs is always reached. So if x(0) > xs or x(0) < xs, xs is always
the final state after some time of dynamics. When x(t) = xs then the system
remains in this state forever. Note that in this state, mass is continuously
flowing at rate k1 = k2xs: the synthesis rate equals the degradation rate!

3.6.1 Exercise

Consider the following system,

S
k+1 s−−⇀↽−−
k−1 y

Y
k+2 y−−⇀↽−−
k−2 p

P (3.22)
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with the concentration of S and P fixed (hence, the underline). Write down
the mass balance for Y and show that y(t) can be found by analogy with the
previous section, by rewriting the mass balance for y. Show that generally ys is
such that v1 = v2 6= 0, this is called a steady state, a state of the system when
mass flows continuously through the system. Does mass always flow in the same
direction? Only when S and P are chosen in a particular manner do we get
the so-called equilibrium state when v1 = v2 = 0. What is the expression that
relates the equilibrium concentration of y, ye, to the parameters of the system?
Set the parameters to the following values: k+

1 = 10, k−1 = 1, k+
2 = 8, and

k−2 = 2, determine a concentration combination of S and P when equilibrium
is reached. What happens to the mass flow when you decrease this P/S ratio
and when you increase P/S? Try to write the steady-state flux in terms of P/S
and the remaining parameters of the system. Figure 3.2 should be helpful while
doing this exercise.

Figure 3.2: Two reversible reactions in series: steady state, equilibrium
state, and flux reversal.

3.7 Rate characteristics, thermodynamic equi-
librium and steady state

In the previous sections, we have learned how to set up mass balances and
rate equations for processes following mass action kinetics. This is the first
step in making a kinetic model of a molecular network. These models are
very useful to study basic properties of molecular systems that have to do with
their dynamics, their control, and the importance of individual molecules and
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reactions for system behavior. Those models are central to this book. Next we
study the various so-called stationary states; states where the concentrations of
molecules are fixed even though they do occur in reactions that synthesise and
consume them.

Let’s analyze the kinetic model of the following system, composed out of two
reversible reactions and one variable intermediate X,

S
1

 X

2

 P (3.23)

Remember that the underline of S and P indicates that their concentrations
are kept fixed. We are therefore only dealing with a single mass balance for
molecule X. If we assume the rates to follow mass action kinetics, we arrive at,

dx

dt
= v1 − v2 = k+

1 s− k−1 x︸ ︷︷ ︸
v1

− (k+
2 x− k−2 p)︸ ︷︷ ︸

v2

(3.24)

Both of the rates of the processes depend on the concentration of molecule X,
denoted by x. For a given concentration x these rates have a certain value
and depending on the difference between these rates x may rise or fall, steeply
or only slightly. Alternatively, the rates balance and x remains fixed. This is
shown in Figure 3.3D where the rate characteristics of this system is displayed.
A rate characteristic is a plot of reaction rates as function of the concentration
of its molecular reactants.

The two lines in Figure 3.3 depict the rates of the reactions as function of
x. When x equals 0 the rate of reaction 1 equals k+

1 s and −k−2 p for reaction 2.
The two rates equal zero at different concentration of x; reaction 1 at k+

1 s/k
−
1

and 2 at k−2 p/k
+
1 . This you can conclude by setting each of the rates of zero

and solving for x.
Suppose you supply an initial amount of x slightly larger than the inter-

section of the rate characteristic of the first reaction with the x-axis. At that
concentration of X, v2 > v1 and the concentration of X will decrease because
dx/dt < 0. The rate with which x decreases becomes smaller as it approaches
the intersection between the two rate curves because dx/dt gets smaller. This
allows a sketch of the dynamics of x, in a plot of x as function of time: it changes
from its initial concentration to its value at the intersection between the two
rate characteristics. The values of x where the two rates are equal is denoted
by, xS , and equals,

xS =
k+

1 s+ k−2 p

k−1 + k+
2

(3.25)

This equation was obtained by setting the mass balance for x to zero, and
solving for its stationary concentration xs. This stationary state is referred
to as a steady state. The system will reach this steady state from any initial
concentration for molecule X. (Do you understand why? This can be concluded
from the rate characteristic.) A steady state is defined as the stationary state
in which all of the concentrations of the molecules are constant (and at least
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one of the reactions rates is unequal to zero). A stationary state requires that
all the mass balances equal zero, which in this example will always correspond
to the state reached after some time.

The previous expression for the steady-state concentration of X depends
on the complete description of the system, all the kinetic constants and the
characterization of the environment, the concentrations of S and P . The pro-
found consequence is that already in this simple, and biologically too simplistic,
example the entire system description determines system properties. It is not
one molecule or process that is most important, but they all contribute! This
fundamental property of molecular systems, i.e. their nonlinear nature and de-
pendence on all molecular properties, makes biology so complicated and forces
us to use mathematics and physics to better understand biology! Only the ini-
tial condition does not matter for the steady-state concentration of X. In a next
chapter, we will study cases where stationary states do depend on the initial
condition.

If we would consider the rate characteristics of the system, S 
 X, the only
feasible stationary state is a state where the net rate of reaction equals zero.
Such a state is called a state of thermodynamic equilibrium. Its relation to
thermodynamics will become clear later.

Note that the stationary state in Figure 3.3 can become a state of ther-
modynamic equilibrium when the values of s or p are chosen appropriately.
Thermodynamic equilibrium will be the final state if p/s is chosen equal to,

p

s
=
k+

1 k
+
2

k−1 k
−
2

(3.26)

Only for this concentration ratio of P over S are the rates v1 and v2 both
equal to zero in the state where x is constant, which is the requirement for a
thermodynamic equilibrium state. The steady state and the thermodynamic
equilibrium state are therefore both stationary states, as all the concentration
are constant, but differ in the values of the reaction rates: in equilibrium all
rates are equal to zero and in a steady state this is not the case.

You should realize that the rate constants, the ’k’s’, are properties of the
reactants and the reaction conditions. An experimentalist can therefore only
change the stationary rate by altering s or p.

3.7.1 Exercises

1. Sketch the dynamics of X as function of time on the basis of the rate
characteristic; take k+

1 = 5, k−1 = 1, k+
2 = 3, k−2 = 2. Show that equation

3.26 indeed causes the system to settle to an equilibrium state where all
reactions rate equal zero. Show that X then has the same stationary
concentration as for the system s 
 x. Show that the time to reach
half the steady-state concentration is halved when all rate constants are
doubled in value.

42



Systems Biology Chapter 3. Kinetics of biochemical reactions

2. Plot the rate characteristic for dx/dt = v1−v2 with v1 = 1/(1+x) and v2 =
x/(1 + x). For which concentration of X does v1 equal v2. Is this state,
a steady state or an equilibrium state? What happens to x as function
of time if the initial concentration of x lies below the concentration of X
where v1 = v2? And what if it lies above this value?

3. Plot the rate characteristic for dx/dt = v1 − v2 with v1 = 1/(1 + x)
and v2 = V2x/(1 + x) for different values of V2 what happens to the
concentration of x where v1 = v2? Does it increase or decrease? Why?
How would you call the kinetic parameter V2?

4. Consider the following reactions A 
 B,B 
 C,C 
 D. All these
reactions follow reversible mass-action kinetics. Express the concentration
ratio of D over A such that the system reaches thermodynamic equilibrium
in terms of the rate constants of the reactions.

5. Do the same for:
A
 B,B 
 C,B 
 D

3.8 Rate characteristics, attracting states, and
dynamics

Using Figure 3.3 we will explain the relation between chemical kinetics, the
mass balances, the rate equations, the stability of the stationary states, and the
dynamics of concentrations of reactants. In figure 3.3, the left figures refer to
the system S 
 X,

dx

dt
= v = k+s− k−x

xT = s(t) + x(t) = s(0) + x(0) ⇒ 0 ≤ x ≤ xT (3.27)

Here we define xT as the total concentration of x, which is set by the initial
concentration of s (s(0)) and x (x(0)), such that at all times we have xT =
s(t) + x(t). The rate characteristics of this system is shown in Figure 3.3A and

we see that the two lines intersect when x = k+xT
k−+k+ . Since, we are considering

only one reaction, i.e. S 
 X, the stationary state where dx/dt = v = 0 is a
thermodynamic equilibrium state because a reaction rate is zero. Note that this
is not the case for the system considered in the second panel of plots in Figure
3.3. There v1 = v2 6= 0 at the stationary state and, hence, a steady state occurs.

Figure 3.3B & D indicate that the stationary state of the two systems is
an attracting state: for all initial concentrations of x the system spontaneously
evolves to the stationary state concentration. For x below the stationary state
dx/dt > 0 and for x above the stationary state dx/dt < 0. This attraction is
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also illustrated in Figure 3.3C & F where the evolution of the concentration of
X is shown as function of time for different initial conditions.

For a system with one variable the column figure shown in Figure 3.3 can
always be generated and give a detailed insight into how the dynamics of the
system follows from the dependency of the process rates on the concentration
of the variable intermediate.
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Figure 3.3: Rate characteristics, stability of the final state, and dynam-
ics. On the left the system S 
 X is considered and on the right S 
 X 
 P
The upper figures show the rate characteristics; the dependency of the reaction
rates on the concentration of the single variable concentration, x. The figures in
the middle show the dependency of the rate of change dx

dt on the concentration

of X; both figures indicate that the stationary state – where dx
dt = 0 – is an

attracting state, as all concentrations of X are attracted to it. The lowest two
figures illustrates the evolution of the concentration of X towards the stationary
state as function of time.
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3.9 Binding equilibria, association and dissocia-
tion constants

Complex formation between molecules is a fundamental process. It occurs in
signaling where proteins dock onto receptors, in transcription where transcrip-
tion factors bind to DNA, and in molecular machines, such as the ribosome,
where multiple proteins together carry out a task. Binding events are often
quantified in terms of a dissociation constant, which is a very useful parameter
to assess the concentration of the proteins where a significant fraction of the
protein exists in a complexed form. Such constants will be introduced in this
section and they will be used to study molecular complex formation.

Consider protein A and B, for instance a cytosolic protein and a membrane
receptor, that can form a complex,

A+B 
 AB (3.28)

One of the relevant questions to ask is: what is the fraction of the molecules of
A that exists in the complex? When is it 10%? When is it 90%? We assume
that B is in excess. This means we only have to deal with the conservation of A
molecules: aT = a+ab (because ab << bT and b ≈ bT ). This equation tells you
that if you start with 100 molecules of A in total that over time this amount
will not change. This means that we can write for the mass balance of A,

da

dt
= k−1 (aT − a)− k+

1 a · b (3.29)

And this you can solve for the equilibrium concentrations using the information
of the last section. In the equilibrium state, the association rate and dissociate
rate are equal, such that the reaction rate is zero, and the total amount of A is
fixed; thus we have the following relationships,

k+
1 a · b = k−1 ab

aT = a+ ab

We can eliminate ab to obtain,

aT = a+
k+

1 a · b
k−1

= a

(
1 +

b

KD

)
(3.30)

Here we have defined the dissociation constant KD, which equals k−1 /k
+
1 . Note

that it has concentration as unit! This means that unbound concentration of A
equals,

a =
aT

1 + b
KD

(3.31)

With the definition of the dissociation constant we can rewrite the equilibrium
condition k−1 ab = k+

1 a · b as ab = a · b/KD and we obtain for the bound concen-
tration of A,

ab =
aT

b
KD

1 + b
KD

= aT
b

KD + b
(3.32)
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Note that b = bT as we assume B in excess. The bound fraction is then ab/aT .
The dissociation constant has unit concentration. It indicates the concentration
of b where the 50% of the molecules of A are in the complex because when b =
KD the concentration ab equals aT /2. So the measurement of the dissociation
constant is useful exercise. Sometimes the association constant is considered,
which is defined as 1/KD.

3.9.1 Exercises

1. Plot ab as function of b. What type of relationship do you find? What is
the ratio of b/KD where 10% and 90% of A is in the complex?

2. The KD of a transcription factor for a DNA binding site is 1 nM . What
is the concentration of the transcription factor such that bound fraction
of binding sites is by 10%, 50% and 90%?

3. Consider the following reactions:

A+B 
 AB

A+AB 
 A2B

Define a KD for the first reaction and the second reaction. Do you under-
stand that those can indeed be different? Assume that the total concen-
tration of B is fixed and that A is in excess. Use the same procedure as
explained in the last section to determine the expression of a2b in terms
of a, bT , KD1 and KD2.

4. The same as the previous question but now for:

A+B 
 AB

A+AB 
 A2B

A+A2B 
 A3B (3.33)

(a) At what concentration of A is 50% of B in the A3B complex?

(b) At what concentration of A is 50% of B in the A2B complex?

(c) What is then the fraction of B in the AB and the A3B complex?
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3.9.2 Exercises

1. Steady state versus equilibrium state Many biological systems attain
steady states. The principles of steady states are therefore very important
and you will study them in this exercise. Consider the following reactions
and assume them to follow mass action kinetics

S
1−⇀↽− X (3.34)

X
2−⇀↽− P (3.35)

We will focus on X. The rate of reactions 1 and 2 are denoted respec-
tively by v1 and v2. Here we use the convention that the concentration
of molecules are written in small font and the name of the molecule in
capitol font.

(a) Give the mass balance for the concentration of X.

(b) When has X attained a steady state?

(c) Can this happen when the concentrations of S and P are not fixed?

(d) What is the name of the state that the system attains when S and
P are not fixed?

(e) Calculate the concentration of X in the final state when S and P are
not fixed, assuming reversible mass-action kinetics.

(f) When S and P are not fixed, the concentration X can only become
constant if the rates of reactions 1 and 2 are each equal to zero. Derive
the two equations that relate the concentration ratio of xs of px in this
equilibrium state. Define those ratio’s as equilibrium constants K1

and K2

(g) Rewrite the rate of reaction 1 and 2 in terms of the constant K1 and
K2 and show that the rates are negative when x

s > K1 and p
x < K2

and positive when x
s < K1 and p

x < K2. What happens if a reaction
rate changes sign?

(h) Fix S and P and solve the differential equation with x(0) = x0 as
initial state.

(i) What is the concentration of X when time become very large?

(j) Are the rates of the reactions necessarily unequal to zero in the fi-
nal state or does it depend on the choice of the value of the fixed
concentrations of S and P?

(k) Express the concentration of X in the final state in terms of the
system parameters.
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(l) Show that at the steady state, when S and P are fixed and the rate
of X synthesis and degradation are equal, that the direction of mass
flow – so from S to P or vice versa – depends on the ratio of p

s .
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3.10 Extra Exercises (Tougher than Exam
Questions!)

1. Enzyme kinetics. Enzymes are the workhorses of a cell. Essentially
all reactions are catalysed by them. They speed up reactions by offering
a favourable physicochemical environment in their catalytic site for the
reaction to occur. Without the enzyme the reaction would also take place,
as enzymes cannot change the equilibrium constant of a reaction, but the
reaction rate would be orders of magnitude slower. So one way to envision
cellular metabolism is that a cell selects reactions that are favourable for
its fitness, by expressing the associated enzymes that can catalyse those
reactions, out of all possible reactions. In this exercise, we will think
about the principles of enzyme catalyses. Consider the following enzyme-
catalysed conversion,

S + E
v+1−−⇀↽−−
v−1

ES
v2−→ E + P (3.36)

The underlines indicate that the concentrations of S and P are held fixed.

(a) Give the mass balances for the concentrations of the variable species
in the model in terms of rates of the reactions.

(b) An enzyme is a catalyst that is not spent during the reaction. This
has one particular consequence for the concentration of enzyme in
the system. What is this consequence?

(c) Why is de
dt + des

dt = 0?

(d) Express the rate of the reactions in terms of mass action kinetics.

(e) Give the units of all the terms appearing in the mass balance equation
with mass action kinetics.

(f) Solve for es at steady state.

(g) The steady-state rate of the enzyme is defined as v = k2es. Ex-
press this enzyme rate in terms of s and identify the combination of
constants that you have to make in order to write this enzyme rate
equation into its more familiar form,

v = Vmax
s

KM + s
(3.37)

(h) Studying 1
v leads to an intuitive understanding of how an enzyme

works (we set eT to 1),

1

v
=

k2

k2k
+
1 s

+
k−1

k2k
+
1 s

+
k+

1 s

k2k
+
1 s

=
1

k+
1 s

(
1 +

k−1
k2

)
+

1

k2
(3.38)
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1
v now corresponds to the waiting time for 1 enzyme to convert one

molecule of S into P . If k2 >> k−1 then ES → E + P nearly always
occurs, rather than ES → E+S, and the waiting time for the reaction
becomes,

1

v
=

1

k+
1 s︸︷︷︸

time to
bind

+
1

k2︸︷︷︸
catalysis

time

(3.39)

Which makes intuitive sense, both reactions have to occur before a

P molecule appears. Why does the
(

1 +
k−1
k2

)
factor appear when k2

is not much larger than k−1 ?

2. The chemostat for culturing of cells. The chemostat is a bioreactor
set up that allows for the continuous steady-state cultivation of cells, it
keeps the cells at a steady-state growth rate. The chemostat state is
sometimes called a continuous culture. The concept is that medium flows
into the reactor from a medium vessel at a fixed flow rate F , expressed in
liter
hr . The volume of the culture V is kept fixed by flowing out medium,

including cells, from the bioreactor into an exhaust vessel at the same
rate. The dilution rate D is now defined as D = F

V . Medium leaves
and enters the vessel at this rate. You can therefore think of D as a
rate constant. The medium vessel contains the growth substrate, which
limits growth, e.g. glucose, at a concentration sm. Since the cells in the
bioreactor consume this substrate the concentration in the bioreactor, s
will be smaller than the concentration in the medium vessel: s < sm. The
cells have a specific growth rate µ that depends on the concentration of
the growth-limiting substrate in the reactor. We model it as,

µ = µmax
s

Ks + s
(3.40)

with 1/Ks as the affinity of the organism for the growth-limiting sub-
strate. This equation is often called the Monod equation with µmax as
the maximal growth rate and Ks as the Monod constant. A model of
the chemostat contains minimally two variables: the concentration of sub-
strate (in mol/l) and cells (in gram/liter) in the bioreactor. For those
variables we can write the following mass balances,

ds

dt
= D(sm − s)−

1

Yx/s
µx (3.41)

dx

dt
= (µ−D)x (3.42)

with Yx/s as the yield of biomass on substrate in gram biomass
mol substrate .
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(a) Explain the meaning of all the terms in the balances: Dsm, −Ds, −
1
Yxs

µx, µx and of −Dx.

(b) At steady state the specific growth rate µ equals the dilution rate D.
Why does this make sense?

(c) Express the steady state concentration of biomass xs and of growth
substratess in terms of model parameters and plot their dependences
on the dilution rate.

(d) What is the maximal possible value of D at which cells still occur in
the chemostat?

(e) What is concentration of growth-limiting substrate in the bioreactor
when the maximal D is reached?

3. Persister cells in bacterial populations In the last few years, it has
become clear that populations of many bacterial species consist of two
subpopulations. One that is growing and another that is non-growing –
‘dormant’. The non-growing cells are more stress resistant than the grow-
ing cells. Antibiotic resistant bacteria are often dormant cells and since
they persist antibiotic conditions, or stress conditions, they are generally
referred to as ‘persister cells’. A single growing cell can switch to become
persister and a persister can switch to become a growing cell. Clearly, the
persister cells do not grow. We therefore have the following three pro-
cesses: i. growth of a cell in the growing state, ii. a cell in the growing
states that switches to the persister state, and iii. a persister state cell
that turns into a growing cell state. We use the following notation: µ =
growth rate, kp = the rate constant for switching from the growing to the
persister state, kg = the rate constant for switching from the persister
state to the growing state, the concentration of growing and persister cells
equals g and p, respectively.

(a) What are the mass balances for the concentrations of growing and
persister cells?

(b) Why does this system never settle to a steady-state concentration of
the cell states?

(c) Do you think the fraction of persister and growing cells becomes fixed
over time?

(d) The balance for the fraction of persister cells, φ, is given by,

dφ

dt
=

d

dt

(
p(t)

g(t) + p(t)

)
︸ ︷︷ ︸

φ

= kp + µφ2︸ ︷︷ ︸
Synthesis rate

− (kp + kg + µ)φ︸ ︷︷ ︸
Degradation rate

(3.43)

The steady state fraction equals,

φs =
kd + kg + µ−

√
(−kd − kg − µ)2 − 4kdµ

2µ
(3.44)
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This fraction was obtained by setting the previous equation to zero
and solving for φ. Derive this equation yourself.

(e) Calculate the steady state fraction. Use realistic parameters: µ =
1 hr−1, kg = 1

10 hr
−1, and kd = 1

100 hr
−1.

(f) Show that the persister fraction indeed moves towards a stable steady
state by plotting the synthesis rate and degradation rate as function
of φ. Use the same parameters as in the previous question.
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3.11 Key messages of this chapter

1. Signal transduction is the process by which cells sense and integrate envi-
ronmental cues and integrate this with the cellular state.

2. Signal transduction done by sophisticated regulatory proteins that change
in activity by way of covalent modification (e.g. phosphorylation) and
conformation changes.

3. Such regulatory proteins form together the cellular signal transduction
network that senses and integrates information and induces and monitors
the progress of cellular responses, for instance involving changes in gene
expression.

4. Mathematical models are very useful in helping you think about the ca-
pabilities and limitations of molecular mechanisms of signal transduction.
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Chapter 4

Signal transduction

4.1 Introduction

All cells experience changes in their environment that they have to respond to
in order to stay alive and competitive as single cells, or perform their functions
in a multicellular context. Changes in nutrients force cells to change their
metabolism to be able to sustain themselves and grow. Changes in temperature,
osmotic pressure or other stresses force cells to make compensatory responses
to repair and protect themselves. These changes are all imposed on cells from
their environment. Therefore, cells need to sense their environment, integrate
this information, and induce adaptive responses. Such responses often involve
regulation of gene expression, which we will discuss in the next chapter. In this
chapter, we focus on the quantification of molecular processes underlying signal
perception and transduction.

4.2 Exercises

1. In signal transduction, proteins are often activated by phosphorylation,
this causes them to change shape and have different binding affinities and
enzymatic activities. They are then inactivated by dephosphorylation.
Kinase phosphorylate proteins and phosphatase dephosphorylate them.

(a) What is the reaction catalysed by a kinase?

(b) What is the reaction catalysed by a phosphatase?

(c) If we keep the concentrations of ATP, ADP, Pi, kinase and phos-
phatase constant which differential equations would you need to
model the activation of protein by a kinase and its inactivation by a
phosphatase?
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(d) What would be suitable enzyme kinetics for the kinase and the phos-
phatase?

(e) Explain why one differential equation is sufficient for the dynamic
description of this process.

(f) Do you think that this system reaches a steady state or an equilibrium
state?

(g) Is this state stable? What if is not?

Figure 4.1: Basic mechanism of receptor activation and signal trans-
mission. Although the precise molecular details differ between signalling systems,
the basic principles are captured in this scheme.
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4.3 Activation of membrane receptors and cy-
tosolic signalling proteins

4.3.1 Signal binding and receptor affinity

We consider a signal S and a receptor R at concentrations s and r, respectively.
Their association and dissociation is captured by the following reaction,

S +R
+−⇀↽−
−
SR (4.1)

v+ = k+ × s× r Rate of binding (4.2)

v− = k− × sr Rate of dissociation (4.3)

v = v+ − v− Net rate of binding (4.4)

We assume S to be in excess, which we denote by an underline in the reaction.
The rate constant k+ and k− are fixed and are properties of the molecules R
and S. The net rate of binding gives the number of SR molecules formed per
unit time. The mass balances are given by,

d

dt
r = −v (4.5)

d

dt
rs = v (4.6)

Since R is not in infinite supply and S exceeds R in amount, we should also
consider that the total concentration of R (rT ) remains fixed:

rT = r + rs ⇒ − d

dt
r =

d

dt
rs : Loss of R = Gain of RS (4.7)

Taken together we arrive at,

d

dt
rs = k+ × (rT − rs)× s︸ ︷︷ ︸

binding rate

− k− × rs︸ ︷︷ ︸
dissociation rate

(4.8)

When you have never seen such a ‘mass-balance equation’ before, then it is
instructive to compare the concentration rs to money in a bank account:

change in money amount in your bank account at time t =
d

dt
money

d

dt
money = earning rate− spending rate = vearning − vspending

Clearly, when vearning > vspending you gain money at time t, i.e. d
dtmoney > 0.

Alternatively, d
dtmoney < 0 if vearning < vspending or d

dtmoney = 0 if vearning =
vspending. In the latter case, your bank account is ”in balance”. We can make
this analogy between money and concentration because both quantities are ad-
ditive. Likewise,
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1. the concentration rs drops when the dissociation rate is higher than the
binding rate: d

dtrs < 0 if vdissociation > vbinding,

2. the concentration rs stays constant when the binding and the dissociation
rate are equal: d

dtrs = 0 if vbinding = vdissociation, and

3. the concentration rs rises when the binding rate exceeds the dissociation
rate: d

dtrs > 0 if vbinding > vdissociation.

Figure 4.2: Receptor-signal binding. A. Picture of the binding reaction. B.
For all starting values of rs, the dynamics goes to the same end state – the equilibrium
concentration – indicated by the black point. We choose rT = 10; so, 0 ≤ rs ≤ 10. C.
The equilibrium point increases when more S is present. D. The dose-response curve
of rs as function of s. Here we considered: k+ = 5, rT = 10, k− = 1.

Interestingly, for a fixed signal and total receptor concentration the reaction

S + R
+−⇀↽−
−
SR always evolves to the same concentrations r and rs at which it

then stays. This is very simple to understand from the plot of d
dtrs as function

of rs shown in figure 4.2B: when rs is smaller than the value of rs at the black
dot then d

dtrs > 0 and rs rises until d
dtrs = 0 at the black dot; whereas if rs

is higher than the black dot value of rs, d
dtrs < 0 and rs drops until it reaches

the black dot value. So, for all starting concentration of rs the same end state
is reached eventually. This is also illustrated in figure 4.3.
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For the parameter values used in figure 4.2B it is easy to calculate the equi-
librium value of rs denoted by rse where v+ = v−:

v+︷ ︸︸ ︷
5︸︷︷︸
k+

× 0.25︸︷︷︸
s

×( 10︸︷︷︸
rT

−rse) =

v−︷ ︸︸ ︷
1︸︷︷︸
k−

×rse ⇒ rse = 5.55 (4.9)

We can use the same trick to solve rs as function of s,

v+︷ ︸︸ ︷
k+ × s× (rT − rse) =

v−︷ ︸︸ ︷
k− × rse

⇒ rse = rT
s

KD + s
with KD =

k−

k+
(4.10)

KD is called the dissociation constant and the affinity of receptor for the signal is
defined as 1

KD
. When the signal concentration equals the dissociation constant,

i.e. when s = KD then rs = rT
2 . Hence, the KD is sometimes called the

half-saturation constant or EC50 (50% effect concentration). The equilibrium
concentration as function of s, the equation 5.6, is shown in figure 4.2D.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

time

rs
HtL

s=2

Figure 4.3: The dynamics of rs as function of time: regardless of the
starting values of rs (marked with the arrows), it always ends up at
the same equilibrium concentration rse. Here s = 2. The horizontal black
dotted line is the vertical dotted line as in figure 4.2B.

It is important that you take a moment to study the differences between the
plots of figure 4.2 and the conclusions:

1. Figure B: Indicates whether rs increases or decreases at a particular
value. Regardless of the values for rs that you take, it always ends up in
the equilibrium state where v+ = v− and rs = rse (see also figure 4.3).

2. Figure C: The equilibrium value of rs depends on s and increases with
s.

3. Figure D: The equilibrium value of rs, rse increases in a hyperbolic
manner with s.
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4.3.2 Conformation change equilibrium

Many regulatory proteins, such as membrane sensors and DNA-binding tran-
scription factors, change conformation upon activation. In our example (figure
4.1) this means that RS changes conformation to a state that the triangular cy-
tosolic protein can bind to. This means that some fraction of the total amount
of RS, which equals rse = rT

s
KD+s , is in the active state and the remainder is

the inactive state,

rse = rsi︸︷︷︸
inactive

+ rsa︸︷︷︸
active

= rsa
(

1 +
rsi

rsa

)
(4.11)

We consider the following reversible conformation change reaction,

rsi
activation−−−−−−−−⇀↽−−−−−−−−
inactivation

rsa

activation rate = va = ka × rsi
inactivation rate = vi = ki × rsa

net activation rate = v = va − vi (4.12)

When va = vi, we can solve for the ratio rsi

rsa that appears in equation 4.11,

ka × rsi = ki × rsa ⇒ rsi

rsa
=
ki
ka

= L (4.13)

The constant L is called the conformation equilibrium constant. Combining
equations 4.11 and 4.13 leads to expression of the active concentration of the
receptor rsa in terms of the receptor-signal affinity (KD), the signal concentra-
tion (s), and conformation equilibrium constant (L),

rsa = rse
1

1 + L
= rT

s

KD + s

1

1 + L
(4.14)

If you are interested in how such models are being applied in drug discovery
read Wootten et al. [27]. For a more fundamental perspective see for instance
Kasai and Kusumi [9].

4.4 Kinase and phosphatase pairs: ultrasensi-
tivity

4.4.1 Phosporylation-dephosphorylation steady state

Phosphorylation of regulatory proteins occurs often in cell biology. Simple mod-
els have contributed a lot to our understanding of how phosphorylation of pro-
teins can give rise to variable degrees of signal sensitivities of cells. To under-
stand this, we have to study the following two reactions where a target protein
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Figure 4.4: Target protein phosphorylation and dephosporylation. A.
Picture of the reaction system. B. Plot of d

dt
tp as function of tp for four different

values of the maximal rate of the kinase (Vk). In each Vk-case, the system evolves to
the same final concentration of tp where d

dt
tp = 0. This is explicitly shown for the

red scenario with the arrows that indicate when the concentration of tp rises or falls.
The dashed lines indicate the end concentration of tp – the steady-state concentration
– for the four Vk values. At higher Vk values, higher tp values are attained at steady
state. Here we considered: Kk = 0.1, Kp = 0.1, Vp = 0.5, rT = 1. C. The dose-
response curve of the steady-state value of tp as function of Vk for different values
of the Kk and Kp. When Kp and Kk are small the dose response curve becomes
steeper and the system becomes more sensitive to changes in the maximal rate of the
kinase (Vk). Here: Vp = 0.5, rT = 1. D. Illustration of the fact that the steady state
concentration reached does not depend on the initial concentration of TP ; the steady
state concentration only depends on the parameters of the enzymes.

T is phosphorylated and dephosphorylated,

Phosphorylation: T +ATP
kinase−−−−→ ADP + TP

Dephosphorylation: TP
phosphatase−−−−−−−−→ T + P (4.15)

The phosphorylation and dephosphorylation reaction do not occur spontaneously,
but are catalysed by a kinase and phosphatase respectively. We do not consider
the concentrations of ATP, ADP, and P and omit those from now onwards.
Since we are considering enzyme catalysed reactions, we have to deal with en-
zyme kinetics to describe the phosphorylation and dephosphorylation rates. We
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take the simplest description, called Michaelis-Menten kinetics,

Kinase kinetics, phosphorylation rate: vk = Vk
t

t+Kk
(4.16)

Phosphatase kinetics, dephosphorylation rate: vp = Vp
tp

tp+Kp
(4.17)

We note that the total target protein concentration tT = t + tp remains fixed
because t is only interconverted between two forms; therefore, t = tT−tp. Taken
together, the rate of change of the phosphorylated concentration is given by,

d

dt
tp = vk − vp = Vk

tT − tp
tT − tp+Kk

− Vp
tp

tp+Kp
(4.18)

Again we can study d
dt tp as function of tp to figure out at which concentra-

tions of tp the concentration of tp rises ( ddt tp > 0), remains constant ( ddt tp = 0),

and drops ( ddt tp < 0). We consider different maximal activities of the kinase,
Vk, to simulate the effect of some activating signal on this enzyme. The plot of
d
dt tp as function of tp is shown in figure 4.4B. Figures 4.4B,D show that the sys-
tem always evolves to the same final concentration of tp. At this concentration
vp = vk and d

dt tp = 0; since vp = vk 6= 0 this state is called a steady state (and
not an equilibrium state then vp = vk = 0). At this steady-state state holds
that,

vk = vp ⇒ Vk
tT − tps

tT − tps +Kk
= Vp

tps
tps +Kp

(4.19)

with tps as the steady-state concentration of TP . In principle, we can solve
the previous equation for tps and obtain an expression as function of Vk that
describes the dependency shown in figure 4.4D. This is not very complicated
but we do not do this here.

4.4.2 Signal ultrasensitivity

Figure 4.4C shows the dose-response curve of the steady-state concentration of
tp as function of Vk. The blue line corresponds to the parameter settings of
figure 4.4A. Figure 4.4C indicates that for lower values of the Kp and Ks values
the dose-response curve becomes steeper. In fact, the steepness of the curve
depends on the K values relative to rT . We will not analyse this in detail here.

Ultrasensitivity occurs when Vk
tp

∂tp
∂Vk

> 1; indicating that a change in Vk of

1% leads to a response in the steady-state concentration of tp that exceeds 1%.
So, the system acts an amplifier of signal changes. This illustrates that a cell
can change the sensitivity of its signalling networks by changing expression of
its target proteins: when their concentrations exceed the KM values of their ki-
nases and phosphatases, the phosphorylated concentration of the target protein
becomes ultrasensitive to changes in regulators of kinase activity.
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Figure 4.5: A signal transduction cascade. A signal change activates a first
kinase that phosphorylates a target protein. As a result, a new steady-state concen-
tration of tp is established resulting in a changes tp concentration, δtp. The change in
the concentration of the phosphorylated target protein, which acts as a kinase or acti-
vates a second kinase, brings about a change in the maximal phosphorylation activity
V ∗
k , at which a new target protein T ∗ can be phosphorylated. The resulting increased

phosphorylated rate causes the steady state concentration of tp∗ to change by δtp∗.

4.5 Signal transduction cascades: sensitivity am-
plification

The slope in figure 4.4D translates a change in Vk, δVk into a change in tp, δtp,

δtp =
∂tp

∂Vk︸︷︷︸
slope

δVk (4.20)

If tp activates another kinase by changing its maximal rate, V ∗K , then the change
in this kinase activity parameter is,

δV ∗k =
∂V ∗k
∂tp

δtp (4.21)

If this kinase, together with a phosphatese, activates another target protein tp∗

then the change in the concentration of this next target protein upon a change

63



Chapter 4. Signal transduction Systems Biology

���

���

���

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

signal concentration

ta
rg
et
pr
ot
ei
n
co
nc
en
tr
at
io
n

Figure 4.6: Sensivity amplification along a signalling cascade: s→ t1p→
t2p→ t3p. Here we considered a cascade of three phosphorylation events, each with a
kinase and phosphatase pair, as shown in figure 4.5. The kinase and phosphatase of all
three tiers in the cascade has the same kinetic properties, so they are identical. What
this figure shows is that when you move down the cascade the response gets more and
more sensitive to a change in the signal, the slope of the curves become steeper. The
final response curve, i.e. of t3p, is very close to a step function – resembling a “light
switch”.

in V ∗k is given by,

δtp∗ =
∂tp∗

∂V ∗k
δV ∗k (4.22)

The ∂tp∗

∂V ∗
k

factor is the slope of the curve of tp∗ as function of V ∗k , like figure

4.4D. So, we have been considering the following cascade of phosphorylations,

δsignal
∂Vk
∂signal−−−−→ δVk

∂tp
∂Vk−−−→ δtp

∂V ∗
k

∂tp−−−→ δV ∗k

∂tp∗
∂V ∗
k−−−→ δtp∗ (4.23)

as shown in figure 4.5. So, the net outcome of the signaling cascade is the
following multiplication of sensitivities (slopes),

δtp∗ =
∂tp∗

∂V ∗k

∂V ∗k
∂tp

∂tp

∂Vk

∂Vk
∂signal︸ ︷︷ ︸

sensivity amplification

δsignal (4.24)

The product of the sensitivities that occurs in this equation indicates the sensi-
tivity amplification occurs along a signal transduction cascade (see figure 4.6).
Depending on the values of those sensitivities small changes in the signal can
bring about either large changes in the output, tp∗, or small changes. This has
been postulated to be one of the functions of signaling cascades; in addition,
to acting as information integrators – an interesting property that we do not
consider here any further.
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gene expression  
response

A B

Figure 4.7: Principle of quorum sensing. A. Growing bacteria produce a
chemical compound, the green circle, at a fixed rate, indicated by the blue arrows.
The green compound can diffuse away, indicated by the orange arrow, or bind to a
dedicated receptor, red rectangle, when the concentration of green compound passes
a threshold. B. The green compound can bind to a sensor embedded in the bacterial
membrane that induces a cellular response such as motility. But binding only occurs
to the sensor if the concentration of the green compound is high enough. So at low
concentrations of the green compound, the bacteria do not respond.

4.6 Exercises

1. Dimerisation kinetics of a membrane receptor. Kasai et al. [10]
studied in a very detailed and patient manner the dimerisation equilibrium
of a membrane receptor, the N-formyl peptide receptor (FPR), in CHO
cells. They found 6000 receptor proteins per cell membrane. The life time
of a dimer is 91 ms (ms=milliseconds) and every 150 ms a dimer is formed
from two monomers.

(a) The authors state that the total number of receptor proteins (nT ) in
the membrane equals: nT = 2× nD + nM with nD as the number of
dimers and the nM as the number of monomers. Why is this correct?

(b) The rate of dimer formation equals va = ka × m2 with m as the
monomer concentration. The rate of dimer dissociation equals vd =
kd × m2 with the m2 as the dimer concentration. Give the mass
balance for the number of dimers. How is this mass balance related
to the mass balance for the number of monomers?

(c) Even though the dimer is the functional form they only found a
small fraction of the receptors in the dimerised form. They found
number of monomers in dimers

number of free monomers = 2500
3500 . Why do you think that this ratio

is so small?

2. Kinase and phosphatase kinetics and the steepness of the in-
put/output relationship of a kinase-phosphatase pair. Open
the file ”kinase and phosphatase.cdf”, after having downloaded Wolfram
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player (see the instructions on Canvas). Convince yourself that the follow
statements are true:

• Increasing the Km of the kinase and the phosphatase makes the in-
put/output relationship, so the steady-state concentration of EP as
function of the maximal rate of the kinase Vk, less steep.

• Increasing the total concentration of the target protein makes the
input/output relationship steeper.

• The ratio of the total concentration of the target protein over the
mean value of the Km’s determines the steepness.

• A higher Vmax of the kinase increases the steady-state concentration
of EP and a higher value of the Vmax of the phosphatase lowers it.

4.7 Additional exercises (Tougher than exam
questions)

1. How negative feedback in a signaling cascade causes insensitiv-
ity to cancer drugs. In engineering, negative feedback is used to make
engineered systems robust against undesired, unpredictable disturbances.
Remarkably, it turns out that cells exploit negative feedback for the same
purpose. We are considering the famous signaling MAPK-pathway made
up out of the following four proteins that sequentially activate each other:
EGFR → RAF → MEK → ERK. This pathway is overly active in
cancer cells and drugs are needed to suppress its activity. In some cells,
activated ERK inhibits RAF ’s activity to activate MEK and in other
cells this does not happen. The cells with feedback are remarkably resis-
tant to a MEK-inhibitor whereas the cells without feedback are not. This
is a well-known problem in oncology and was recently studied using a sys-
tems biology approach by two papers [23, 5]. For the cells with feedback
the following response equation for ERK can be derived (the r’s denote
strengths of protein interactions: so, a 1% change in RAF gives a rMEK

RAF %
change in MEK),

d lnERK︸ ︷︷ ︸
Output

response, y

=

Amplification factor of cascade, A︷ ︸︸ ︷
rERKMEK × rMEK

RAF

1− rRAFERK × rERKMEK × rMEK
RAF︸ ︷︷ ︸

Feedback strength (−f) and
cascade amplification: −fA

× rRAFEGFR × d lnEGFR︸ ︷︷ ︸
Change in cascade
activation/input, u

⇒ y =
A

1 + f ×A × u (Used in control engineering) (4.25)
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So, feedback action in engineered and biological systems are very similar
and we can learn from engineers in studying the robustness of biological
systems!

(a) Draw the network with and without feedback and indicate the
strength of the interactions, the r’s, on top of the interaction arrows.
Investigate the equation given above once more given this network
diagram. The equation should now make more sense.

(b) What is the response equation, so y as function of u, in the absence
of the feedback (so when f = 0)? What is effect of the feedback?

(c) Why does feedback (when it is strong) make the system insensitive
to drug-induced changes in the cascade, A?

(d) Does feedback also protect against any drug-induced changes in u?
Hence, do you think that EGFR inhibitors should be more potent
than MEK inhibitors?

(e) If you want to understand how the feedback works then rewrite the
engineering equation to y = A × (u − f × y). So, the feedback sub-
stracts the system output from the input. This is indeed how engi-
neers make their control devices. Say, y is the temperature change
in a room relative to a desired setpoint, A is related to the capacity
of the room to absorb heat, u is the change in outside temperature,
and f is the action of the feedback in your thermostat. When does
the thermostat work properly? What does this mean for the value of
f? So, biological systems even work as thermostats sometimes!

2. Bacteria communicating with each other and deciding together.
Bacteria are much smarter than we often think. For instance, they use a
mechanism called quorum sensing to keep track of the number of bacteria
in the population. In this way, bacteria can ‘measure’ their population
size and initiate a response when this number passes a threshold. Some
bacteria even use this mechanism to measure the abundance of competing
or harmful bacteria. The principle of quorum sensing is shown in figure
4.7. (We note that not all bacteria use sensors to measure quorum-sensing
compounds, you can also think of the sensor as a transcription factor
inside the bacterium, and the green compound as freely diffusing over
membranes.)

Say that the production rate of green compound per cell equals, kp, in
nM

minute×cell , that we have N cells, and that the diffusion rate equals kd in
1

minute .

(a) Write down the mass balance of the extracellular concentration of the
green compound, denoted by g, and express this equation in terms
of kp, N , and kd.
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(b) Express the steady state concentration of g, called gs, in terms of kp,
N , and kd.

(c) Suppose that the bacteria grow exponentially, such that their number
increases as N(t) = N(0)× eµ×t, with µ as the growth rate and t as
time. We also know that when gs exceeds the threshold concentration
g∗ that the cells respond with gene expression. Express the time at
which the cells initiate a response in terms of kp, kd, N(0), and µ.
Assume that at every moment in time g ≈ gs.

(d) Calculate the time that it takes before the threshold concentration is
reached when we start with 1 cell, kp = 5 nM

minute×cell , kd = 100 1
minute ,

µ = 1 hour−1 and g∗ = 100 nM.

(e) What is the threshold number of cells?

3. Does a cell need to be covered completely with sensors for max-
imal sensing or witg transporters for a maximal uptake rate of
nutrients? We consider a cell with radius a that has N transporters
or sensors on its surface, each with radius s. The transporters transport
nutrient molecules that find the cell by diffusion whereas the sensors bind
molecules and initiate signaling. The nutrient or signal concentration far
away from the cell is c∞. The nutrients and signals diffuse with a diffusion
coefficient D. The relation between the uptake flux, J , (or sensor binding
rate) and those parameters is (Berg & Purcell, Biophysical Journal, 1977),

J = 4πDc∞a︸ ︷︷ ︸
Jmax

Ns

Ns+ aπ
⇒ J

Jmax
=

Ns

Ns+ aπ
(4.26)

with Jmax as the maximal uptake rate. N can be considered as the only
variable in this equation. Consider a transporter of 5 nm and the cell of
1 µm in radius. Those are realistic numbers for bacteria.

(a) How many receptor are required for half maximal uptake?

(b) Consider the transporters as disks and the cell as a sphere. What is
percentage of area covered by transporters for half-maximal uptake?
Write down your expectation first.

(c) Plot the J
Jmax

as function of the cell-surface area that is occupied by
transporters.

These were very surprising results and also exact results, no approxima-
tions were made in the derivation of the equations mentioned above that
are not biologically realistic.
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4.8 Key messages of this chapter

1. Signal transduction is the process by which cells sense and integrate envi-
ronmental cues and integrate this with the cellular state.

2. Signal transduction done by sophisticated regulatory proteins that change
in activity by way of covalent modification (e.g. phosphorylation) and
conformation changes.

3. Such regulatory proteins form together the cellular signal transduction
network that senses and integrates information and induces and monitors
the progress of cellular responses, for instance involving changes in gene
expression.

4. Mathematical models are very useful in helping you think about the ca-
pabilities and limitations of molecular mechanisms of signal transduction.
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Chapter 5

Gene regulation

5.1 Introduction

Gene regulation is often considered the most important decision making process
by many biologists. I guess this believe is so common because gene regulation
acts directly on DNA, and DNA is by many biologists believed to be the central
molecule. This is not entirely correct, especially not when one considers bacteria
or other autonomously living cells (such as yeasts or cancer cells): such cells can
be best perceived as selfish, self-replicating, highly-evolved sensors and adapters;
they carefully sense their environment and adapt themselves to maximise their
fitness and survival prospects. In this context, the genome acts as a ”cookbook”
that prescribes how cellular components can be made when they are needed.
So, DNA is an equal part of the decision-making and execution machinery of
the cell as metabolism and signal transduction are. These three subsystems are
highly coupled and none of them is really ”in charge” of the others. This is
precisely why cells are so complicated to understand: it is a huge network of
molecular interactions, thriving only to reach one goal, which is to make copies
of itself across as many conditions as possible.

We know now that gene regulation follows very simple principles, at least
in the best understood organisms, i.e. bacteria. In higher eukaryotes, such as
humans, gene regulation is much more complicated and even though general
principles are slowly emerging they are still very sketchy and actively being
studied. So, to ”play” with the basic molecular interactions and kinetics of
gene regulation we limit ourselves to bacterial systems. You do not have to be
disappointed; many cool things occur in these systems that are transferable to
the more complicated, less-well understood gene regulation systems of mammals.
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Figure 5.1: Basic principles of gene regulation by a repressor and an
activator. A. Basic gene structure. B. A repressor blocks the binding of the RNA
polymerase. When the RNA polymerase binds it is complexed with a sigma factor.
Transcription initiation involves open complex formation – opening of DNA followed
by RNA polymerase movement, dissociation of the sigma factor, and progression of
the elongation RNA polymerase along the gene. C. An activator stabilises the binding
of RNA polymerase to the DNA and enhances the rate of transcription initiation. In
some cases, the activator binds more distant and a DNA loop is formed to facilitate
stabilising activator-RNA polymerase interactions.

5.2 Activation and inhibition of a single gene

Gene activity vg is simply defined as the number of mRNA molecules (deriving
from a single gene) produced per unit time by all the gene copies in a cell,

gene activity =
d

dt
m = vg (5.1)

with m denoting the mRNA concentration; the gene activity (or transcription
rate) vg is proportional to the copy number of the gene encoding the mRNA of
interest.

The rate vg is dependent on many factors: concentrations of RNA poly-
merase, auxiliary proteins (such as sigma factors), transcription factors, and
nucleotides; and on kinetic properties that are determined by the promoter se-
quence of the gene and the associated proteins. All of this we can describe by
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the following equation,

vg =

maximal transcription rate︷ ︸︸ ︷
ng︸︷︷︸

copy
number

× kg︸︷︷︸
rate constant

per copy

× fg(concentration of transcription factors)︸ ︷︷ ︸
Gene Regulatory Function (GRF); 0≤fg≤1

(5.2)

The concentrations of RNA polymerase, sigma factors, and nucleotides we con-
sider fixed, to keep things simple and consider them as part of the transcription
rate constant (kg). This constant varies between 25 − 80 nucleotides

second in E. coli.
The gene copy number per cell varies with the growth rate and ranges from 1
to 7 from low to high growth rates.

Basic mechanisms of transcription regulation are schematically shown figure
5.1. Transcription factors are proteins that either stimulate or repress tran-
scription initiation. This they achieve by binding to the promoter sequence of
the gene of interest and the influence that they have on RNA polymerase ac-
tivity. Transcription-factor binding sites can be adjacent to the transcription
start site where the RNA polymerase binds to or they can be distant. In the
latter case, DNA folding is required to achieve direct physical interaction of the
transcription factor with RNA polymerase.

In prokaryotes, sigma factors (proteins; E. coli has several of them) are
required for transcription initiation and they are specific for classes of genes.
So, stress response genes can all be associated with the same sigma factors (i.e.
σH , σE , and σS), whereas metabolism and growth-related genes are dependent
on another sigma factors (i.e. σ70 and σ54). When the RNA polymerase/sigma
factor complex is bound to the transcription start site, transcription initiation
starts when DNA is ”melted”: the DNA is opened by the RNA polymerase
to make the template DNA strength accessible and usable as a template for
RNA synthesis. Next, RNA polymerase moves a little into the body of the
gene, the sigma factor is released, and the RNA polymerase continues until
it reaches the end of the gene where it releases the finished mRNA and falls
off the DNA. This process takes about 15 seconds whereas the time between
consecutive transcription initiation is a lot more variable and can be minutes.

Several binding sites can occur in the promoter of a gene where several
different or identical transcription factors bind. The net outcome is that they
determine together the rate of transcription initiation. How they do this is
quantitatively described by the gene regulatory function (see equation 5.2).

5.3 Gene regulatory functions describe influence
of transcription factors on transcription rate

Gene regulatory functions (GRFs) describe the influence of the transcription
factor concentrations and interactions on the promoter region of a gene. They
describe the ”saturation” degree of the promoter with activating transcription
factors: at high transcription factor concentrations all promoters are bound to
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Figure 5.2: Examples of gene regulatory functions. A. Examples of GRFs
of activating transcription factors. B. Examples of GRFs of inhibiting transcription
factors C. Examples of a GRF for a bandwidth-activating transcription factor. D.
Examples of a GRF for a bandwidth-inhibiting transcription factor.

transcription factors and the promoter is said to be ”saturated” then fg = 1, if
50% of the promoters are occupied then fg = 0.5 and if none of the promoters
are bound then fg = 0. If the transcription factor in figure 5.3 is an activator

of transcription when two copies of it bind to the promoter then fg = tfptf
pT

=
tf2

α×K1×K2

1+ tf
K1

+ tf
K2

+ tf2

α×K1×K2

; else if this transcription would be an inhibitor and the

empty promoter state would be active then fg = p
pT

= 1

1+ tf
K1

+ tf
K2

+ tf2

α×K1×K2

.

Figure 5.2 shows various possible GRFs that vary in their sensitivity to the
transcription factor and show examples of transcription factors that have an
effect in a particular concentration region (”bandwidth”).

Figure 5.3 shows a transcription factor binding mechanism where an identical
transcription factor binds on two adjacent sites on the promoter. In such a
case, an allosteric interaction can occur that either sensitises or desensitises the
promoter for transcription factor binding when one of the two sites is occupied.
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Figure 5.3: Allosteric interaction between transcription factors that
bind to adjacent sites in the promoter region of a gene. A. Transcription
factor (tf) binding and interaction state diagram. B. The concentration fractions of the
four promoter states. The concentrations of the promoter states are: p, tfp, ptf , and
tfptf . The total promoter concentrations, pT , is defined as pT = p+tfp+ptf+tfptf .
K1 and K2 denote the dissociation constants of the binding sites 1 and 2, respectively.
The α factor describes the interaction between the transcription factors: in case of
positive allostery 0 ≤ α ≤ 1, negative allostery α > 1 and if no interaction occurs then
α = 0.

Figure 5.4: Effect of an allosteric interaction on the transcription factor
concentration range.
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5.4 Interpretation of the dissociation constant
of a transcription factor for its DNA binding
site

It is instructive to take a moment and think about the physical basis of a
dissociation constant, the K1 and K2 in figure 5.3. They have concentration as
unit and are defined by the kinetics of the association and dissociation reaction
of the transcription factor to the DNA site,

TF + P
association,va−−−−−−−−−−⇀↽−−−−−−−−−−
dissociation,vd

TFP

va = ka × p× tf
vd = kd × tfp

At equilibrium: va = vd ⇒ tf×p
tfp = kd

ka
= KD

(5.3)

The association rate constant can be related to the diffusion coefficient of the
transcription factor as,

ka ≈ 4× π ×Dtf × (rtf + rsite)×Navogadro × 10−9 (5.4)

When the D is given in dm2/s and the radii in dm, the unit of ka is 1
nM×s . We

know those numbers for E. coli,

ka ≈ 4× π × 5
(10−5dm)2

s
× 2× 5× 10−8 dm

molecule
× 6× 1023 molecules

mol

×10−9 mol

nmol
= 0.4

1

nM× s
(5.5)

A characteristic free concentration of transcription factors is 10 − 30 nM =
10− 30 molecules

cell in E. coli. In order to saturate the promoter we require tf
KD
≈

10. So, a KD of a 3 nM is a good estimate. Since ka = 0.4 1
nM×s , kd has

to be kd = ka × Kd = 0.4 1
nM×s × 3 nM = 1.2 1

s . The residence time of

the transcription factor on the DNA site equals 1
kd

= 0.8 s. It then takes

about 1
ka×tf×p = 1

0.4×20×1 = 0.125 s before the promoter is occupied again
assuming that tf = 20 nM and p = 1 nM . This time increases ten fold when
tf = 2 nM . At those conditions, tf

KD
= 20

3 = 6.7 and the saturation of the
promoter (assuming it has one binding site) equals,

gene activity

maximal gene activity
=

tf

tf +KD
(5.6)

=
20

20 + 3
= 0.87 (5.7)

In figure 5.5 the saturation of the promoter with the transcription factor is
shown as function of the free transcription factor concentration.
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Figure 5.5: Saturation curve of a promoter with a single transcription
factor binding site. This dependency is described by equation 5.6.

Next, we add transcription initiation to the model,

TF + P
ka=0.4 1

nM×s−−−−−−−−−⇀↽−−−−−−−−−
kd=1.2 1

s

TFP
ki−→ elongating RNA polymerase (5.8)

The initiation probability, pi, when the promoter is in the bound state TFP
equals pi = ki

ki+kd
. So, it takes on average 1

pi
trails before an elongation RNA

polymerase appears from a TFP state. In total this takes 1
pi
× 1

ki
time and,

hence, it is likely that TFP falls apart before an elongation RNA polymerase
has appeared. Then we have to wait at least 1

ka×p×tf = 0.125 s before a new
TFP state appears. So, the rate of elongating RNA polymerase is a rather
complex function. At steady state its value can be derived from the steady
state condition. We denote that steady state TFP concentration by tfps and
we assume that tf is fixed and the total promoter amount equals pT = p+ tfp,

ka × tf × (p− tfps)− kd × tfps − ki × tfps = 0

⇒ tfps =
ka × pT × tf

kd + ki + ka × tf
= pT

tf
kd+ki
ka

+ tf

vinitiation = ki × tfps (5.9)

Note that when we define KM = kd+ki
ka

, a Michaelis-Menten relation results for
gene expression rate as function of the transcription factor concentration,

vinitiation = VMAX︸ ︷︷ ︸
ki×pT

× tf

KM + tf
(5.10)

This derivation underlies most mathematical models of gene expression regula-
tion. A realistic value for ki is 0.5 1

min . It is insightful now to see how low the
probability for initiation actually becomes!,

pi =
ki

ki + kd
=

0.5 1
min

1
60

min
s

0.5 1
min

1
60

min
s + 0.8 1

s

= 0.01 (5.11)
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We can now also calculate the KM ,

KM =
kd + ki
ka

=
1.2 1

s + 0.5 1
min

1
60

min
s

0.4 1
nM×s

=
1.2 + 0.008

0.4
nM = 3.02 nM (5.12)

If you had problems following this section then it’s main insights are sum-
marised in figure 5.6.

Figure 5.6: Overview of transcription regulation calculations made in
the text.

5.5 Adding mRNA degradation to the picture

Like any other molecule in the cell, transcripts are also degraded. So, we have
to extend the picture of mRNA synthesis with degradation,

d

dt
m = vg − kd ×m = ki × pT ×

tf

KM + tf
− kd ×m (5.13)

Here we take vg = vinitiation which is a good approximation for most genes.1

The steady state mRNA concentration ms equals,

ms =
ki
kd
× pT ×

tf

KM + tf
(5.15)

This equation indicates that the steady state transcript concentration depends
in a hyperbolic manner on the transcription factor concentration. A realistic

1Some genes however are so packed with RNA polymerases that the steady state is not
determined by ki but by the delays introduced by RNA polymerases collisions such that
kg 6= ki; then;

1

kg
≈

1

ki
+ nc × τc (5.14)

With nc and τd as the number of collisions and the delay time per collision such that their
product equals the total delay time. As a result the time between consecutive mRNA produc-
tion events 1

kg
equals the times between consecutive initiations and the time delay introduced

by polymerase collisions.

78



Systems Biology Chapter 5. Gene regulation

value for kd = 1
10

1
min indicating that every 10 minutes a mRNA is degraded (on

average). Taking all the number together we arrive at,

ms =
0.5

0.1
× 1× tf

3.02 + tf
⇒ 0 ≤ ms ≤ 5 nM (5.16)

(Note that 1 nM = 1 molecule
cell .)

Following induction of gene expression, after a sudden increase in the (active)
transcription factor concentration, mRNA synthesis follows and after some time
a steady state mRNA level is reached. We shall now characterise the ”response
time”, the waiting time for the mRNA concentration to reach 50% of its steady
state value. To achieve this, we first have to solve equation 5.13 (assuming that
at time zero there is no mRNA),

m(t) = ms

(
1− e−kd×t

)
(5.17)

We note that ms is a function of tf (equation 5.15). The response time t1/2 is
now defined as,

1

2
=
(
1− e−kd×t1/2

)
⇒ t1/2 =

ln 2

kd
(5.18)

So, a mRNA that lives short is quickly degraded and will have a fast response
time.

5.6 Autoregulatory gene expression: bistability
and memory

Many transcription factors regulate their own transcription rate, either posi-
tively or negatively, which is known as “autoregulation”. In the case of positive
autoregulation, the dynamics of the transcription factor concentration could
result from the following mass balance equation,

d

dt
tf = kb + kg × pT ×

tf3

K3 + tf3︸ ︷︷ ︸
vg

− kd × tf︸ ︷︷ ︸
vd

(5.19)

This system is studied in figure 5.7. As function of the basal level of transcription
activity kb multiple steady states can occur. This phenomenon is known as
“bistability” and occurs surprisingly often in cell biology – it is for instance
mechanims that plays an important role in cellular differentiation. Generally,
bistability arises in more complicated systems than considered here, making this
system a prime example of the basic features of bistability.

Bistability provides a simple form of memory. This becomes clear when you
study figure 5.7D. Say, we start at a lower value for the basal rate constant.
Suppose we can vary this rate constant experimentally. When we increase the
value of this constant and monitor the steady-state value of the transcription
factor then we track the lower blue line upto the point where it becomes red.
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Then we jump to the higher steady states (upper blue line), as the red steady
state are unstable and, therefore, inaccessible. So, we now have arrived at the
upper blue line. When we decrease the kb value we move to the left over the
upper blue curve! Thus, we find different values of tfs for the same value of kb
that we passed earlier! This is a form of memory: if you start at low kb then
you remain at low tfs values in the region with three steady state, whereas if
you start at high kb values you remain at high tfs values.

Figure 5.7: Overview of transcription regulation calculations made in
the text. A. Overview of the network diagram of autoregulatory transcription
factor. B. Three steady-states can occur in this system, as indicated by the
dots. The red dot marks a steady state that cannot be reached by the system as
the dynamics always move in the opposite direction as indicated by the arrows.
The blue steady state are accessible by the system. The left steady state is
reached for concentration of the transcription factor below the red dashed line
whereas the right state is reached for concentration higher than the red dashed
line. C. Whether three steady states or only one occur depends on the value of
kb when it is zero only the green steady state is possible, when it is high the red
state is possible, and for intermediate values multiple three steady states are
possible. D. The admissible steady states are shown as function of the value of
kb. Here we used the realistic parameters derived in the main text.

80



Systems Biology Chapter 5. Gene regulation

Figure 5.8: Transcription factor networks. Activation of transcription fac-
tors occurs by signalling networks that respond to extra- and intracellular sig-
nals, such as toxins, nutrients, and growth factors. The gene activity of tran-
scription factors is regulated by transcription factors in the gene network, which
sets the total concentration of transcription factors. So, the fraction of active
transcription factor is set by the signaling network, whereas the total amount is
set by the transcription factor network. Finally, the resulting active transcrip-
tion factor concentration determines the activity of target genes. Two examples
of transcription factor networks that occur frequently are shown: i) a feedfor-
ward loop network and ii) a mutual inhibition network that is often occurring
in gene control of cell differentiation – i.e. the formation of different cell types
in multicellular organisms.

5.7 Transcription factor networks: mutual inhi-
bition/activation and feedforward loops

When the transcription rates of transcription factors are controlled by other
transcription factors then we speak of a transcription factor network. The con-
centrations of those transcription factors in such networks are interdependent
and the regulation of the target genes of these transcription factors are regulated
indirectly by all those transcription factors. Generally those transcription factor
are controlled in activity by signaling networks; so, a complicated network of
sensing, integration and cellular response results as shown in Figure 5.8.
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5.8 Exercises

1. Induction and repression of gene activity. When the yeast Saccha-
romyces cerevisiae grows on methionine and sulphate as sulphur sources,
it prefers methionine over sulphate. On methionine it reaches a higher
growth rate and saves itself the expression of a metabolic pathway that
synthesises methionine from sulphate. When methionine runs out, or when
the medium is shifted to one without methionine, the methionine biosyn-
thesis pathways needs to be expressed. A central enzyme in this pathway
is sulphite reductase. When subsequently a change is made to a medium
with excess methionine, the expression of this enzyme needs to be re-
pressed again. We carried out this experiment and determined the num-
ber of transcript molecules per cell during those two transitions [18]. The
experimental data is shown in Table 5.1 & 5.2.

(a) Plot the two experimental datasets; for instance, in Microsoft Excel.

(b) What could explain the overshoot in the induction dynamics?

(c) Fit the repression dynamics to the theoretical relation m(t) = m(0)×
e−kd×t to determine the kd value, the degradation rate constant. You
can do this by hand in Excel, by selecting a value of the kd such that
the theoretical relation overlaps best with the experimental data.
What is the unit of kd? What is the life time of the mRNA? Is the
repression dynamics slightly delayed or does it start immediately at
time zero? What do you expect and what does the data suggest?

(d) Fit the experimental data of the induction experiment to the theo-
retical relation m(t) = ms×

(
1− e−kd×t

)
with ms = ks

kd
to determine

the transcription rate constant. Use the kd value obtained from the
previous exercise. This equation corresponds to the simplest hypoth-
esis about the mechanism:

• mRNA synthesis is induced at time zero from a synthesis rate of
zero to a rate with value ks,

• induction starts from 0 mRNA molecules,

• synthesis and degradation follow the simplest kinetics: d
dtm =

ks − kd ×m
What is the unit of ks? Do you think that this model describes the
induction mechanism properly? If not, which two features that are
apparent in the data should be added to the model to improve the
fit?

2. Dynamics of feedforward loop gene networks [1]. Consider the feed-
forward loop network in figure 5.8. An interesting feature of such networks
is their dynamics. The feedforward loop is the activation of the synthesis

82



Systems Biology Chapter 5. Gene regulation

of transcription factor TF3 by TF1. Consider the system at steady state
at time point 0 when suddenly the synthesis of TF1 is increased. We start
from TF ’s concentrations that are close to zero. Sketch the dynamics of
TF1, TF2, and TF3 – so, their concentrations as function of time – for two
different cases. Those cases only differ in the sign of the activation of TF3

synthesis by TF2; for one system it is positive and activating whereas for
the other system it is negative and inhibiting. In the activating case, the
synthesis rate of TF3 is proportional to the product of the concentration
of TF1 and TF2; so, then we effectively model an AND relation between
these two transcription factors. Which of the two models is expected to
show a peak in the concentration of TF3 as function of time and which one
is expected to show a delay in the activation of TF3 (when you compare
the dynamics of TF1 and TF3)?

3. The lac operon of Escherichia coli. The lac operon of E. coli encodes
three genes required for catabolism and transport of the sugar molecule
lactose. The transcriptional activity of this operon is controlled by two
transcription factors: the repressor LacI and the activator CRP. CRP
becomes active when it binds to cAMP. The concentration of cAMP is
high when the glucose concentration is low. So, glucose suppresses cAMP
production. When LacI binds IPTG (a lactose analogue), it no longer
binds to the promoter of the lac operon. Setty et al. [21] have studied the
gene regulatory function of the operon by titration of the concentration of
cAMP and IPTG followed by measurement of the transcription activity
of the lac operon. They fitted an equation to their data, which is plotted
in figure 5.9. When is the lac operon activated?: a) when lactose is high
and glucose is high, b) when lactose is low and glucose is high, c) when
lactose is high and glucose is low, or d) when lactose is low and glucose
is low? Given you answer, what do you expect what E. coli does when it
grows on a mixture of glucose and lactose?

4. Transcription factor binding to DNA Transcription factors bind to
DNA to influence the rate of mRNA synthesis. We consider the following
reaction,

F +D
association−−−−−−−⇀↽−−−−−−−
dissociation

DF, (5.20)

with F as the transcription factor and D as the DNA binding site. Con-
centrations are in small font and names of molecules in capitol font.

(a) Why are the total concentrations of F , which is equal to fT = f+df ,
with subscript ’T’ for total, and of D, equal to dT = d+df , constant
when the binding reaction occurs in a test tube? Which condition(-s)
needs to be met?
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(b) If this reaction can be described in terms of mass action kinetics then
what would be the rate equation for this reaction and what be the
units of all the terms occurring in it?

(c) Consider the situation where we keep the concentration of the tran-
scription factor fixed. Give the mass balances for d and df .

(d) Explain why the following relation holds: d
dtd = − d

dtdf .

(e) Show that at thermodynamic equilibrium the following relation holds,

df = dT
f

kd
ka

+ f
(5.21)

(f) The ratio kd
ka

is called the dissociation constant and often written as
KD. What is its unit?

(g) What is the unit of f
KD+f ?

(h) Say the volume of a bacterial cell is 1 fl and 15 molecules of f occur
in this cell. What is the concentration of f in nM?

(i) If one DNA site exists in this bacterial cell then what would be its
concentration in nM?

(j) Plot the occupancy fraction of the DNA binding site, defined as df
dT

,

as function of f . Set KD=2 nM. When is df = dT
2 ?

(k) If f is maximally 15 nM then what is the maximal occupancy frac-
tion?

(l) If the transcription rate equals v = ktdf and kt equals
5 nM mRNA

nM DNA site×min then what is the rate of mRNA synthesis when f
equals 0.1 nM, 1 nM, or 10 nM. What is the maximal rate?

(m) If the lifetime of mRNA equals 10 min, which is a realistic number
for bacteria, what is the steady state concentration of mRNA when
f = 1 nM?

5. Sliding of transcription factors along DNA shortens the pro-
moter search time. In bacteria, transcription factors find their target
DNA sites, from which they regulate transcription, via shortly sliding in
1-D along the DNA, starting from a random DNA site that they encoun-
tered after a 3-D diffusive search for DNA in the cytoplasm. If during a
single slide the target site is not found the transcription factor falls off
and the process starts again. The search time for the target DNA site by
a single transcription factor molecule is given by the following equation

τs =

(
V

4πDL
+

l2s
2D1

)
L

ls
, (5.22)

84



Systems Biology Chapter 5. Gene regulation

with V as the cell volume, D as the cytosolic diffusion coefficient, L as
the DNA length, ls as the sliding length and D1 as the sliding diffusion
coefficient. The search time for the target site without sliding equals

τws =
V

4πDa
, (5.23)

with a as the reaction radius of the target site on the DNA. In this question
consider the following parameters: D = D1 = 5 µm2/s, a = 5 nm,
L = 1.5× 103 µm, ls = 30 nm and V = (2 µm)3.

(a) What is the length of DNA in mm? Note that this length is a realistic
value for E. coli). What is the length of an E. coli cell? How many
times should the DNA be folded to place it in a cytosolic compart-
ment of half the length of an E. coli cell? (Can you imagine now how
weird it is that during DNA replication the two genome copies have
to unwind and separate? This is a longstanding issue in E. coli and
currently believed to occur spontaneously due to entropic forces.)

(b) Calculate the search time, τws, for the DNA target site without slid-
ing.

(c) Calculate the search time, τs, for the DNA target site with sliding.

(d) Explain the meaning of V
4πDL ,

l2s
2D1

, and L
ls

in equation 7.78.

(e) When is sliding along DNA by transcription factors advantageous?

Table 5.1: Induction data.

time (min) transcripts
cell

0 1.9
10 1.8
20 2.00
30 3.6
40 20.1
50 26.7
60 31.1
70 26.4
80 23.6
90 24.3
100 22.3
120 18.2
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Table 5.2: Repression data.

time (min) transcripts
cell

0 18.0
5 15.8
10 10.7
20 4.3
30 2.1
45 1.3
60 1.3

Figure 5.9: The gene regulatory function of the lac operon of E. coli.
The transcription activity of the lac operon was measured as function of the IPTG
and cAMP concentrations. The resulting experimental data was fitted to a function
which is plotted in 3D in figure A and in 2D in figure B. So, figure B is figure A when
viewed from the top. This data comes from Setty et al. [21].

5.9 Key messages of this chapter

1. Genes are not dictating cellular behaviour as some say but gene activ-
ity rather results from environmental sensing and the integration of this
information with the cellular state.

2. Individual gene activity is determined by a gene regulatory function that
depends on the interplay between transcription factors, which are each
dependent on the cellular state.

3. Transcription factors can form networks to give rise to puzzling and as-
tonishing decision behaviour by genetic circuits underlying cellular differ-
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entiation, adaptation to new conditions and phenotypic diversification of
cellular populations (bistability).
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Chapter 6

Metabolism and cell growth

6.1 Introduction

Signal transduction, metabolism and gene expression are all coupled to ensure
that cells carry out their function in multicellular organisms or that they grow
and withstand stresses in case of autonomous unicellular organisms. In this
chapter, we will investigate some of the basic properties of metabolism and
growth:

1. what is exponential growth and why is it so important?,

2. why does exponential growth implicate that metabolism operates at a
steady state?,

3. short-lived proteins reach their steady state concentration faster at steady-
state growth than long-lived proteins,

4. basics of metabolic pathways,

5. how does metabolic regulation work and bring about changes in cellular
growth when conditions change?

6.2 The basics of exponential growth of cells

At exponential growth, the number of cells X and the total cell volume V of the
population both increase exponentially at a rate µ, called the specific growth
rate,

d

dt
X = µ×X with X as the number of cells

d

dt
V = µ× V with V as the total volume of a cell population (6.1)
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Figure 6.1: Exponential growth of cells A. Population perspective: the number
of cells, number of molecules and total cell volume all double within one generation
time and increase exponentially in time. B. Single-cell perspective: every daughter
cell doubles its own content and size within one generation time. A daughter has ln 2
times the value measured at the population level and a mother has 2 ln 2 times this
value.

These equations indicate that the ratio X
V remains fixed because they rise equally

fast in time.1 We will call this ratio χ.
How does the concentration of a protein change with time at exponential

growth? The concentration c is defined as the number of molecules divided by
the volume. Since, the number of molecules and the cell volume both change,
their ratio, the concentration, changes due to both,

c =
n

V
d

dt
c =

d

dt

(
n× 1

V

)
=

1

V

d

dt
n− n

V 2

d

dt
V (6.2)

Here we have used the product rule of differentiation: d
dt (f(t) × g(t)) = g ×

d
dtf + f × d

dtg.
The change in the volume is set by the growth process; exponential growth

in this case. The change in the number of molecules is set by the activity of the
reactions that this molecule is involved in. We limit ourselves to the simplest
case: the protein of interest is synthesised at a constant rate per cell, κ in
molecules
cell×time , such that the total number of proteins increases as,

d

dt
n = κ ·X. (6.3)

1You can verify this by using the product rule of differentiation: d
dt

(
X × 1

V

)
= 1

V
d
dt
X −

X
V 2

d
dt
V = µ× X

V
− X
V 2 × µ× V = 0! So, the ratio of X and V does not change with time at

exponential growth!
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Substitution of this equation into equation 6.2 gives,

d

dt
c = κ×

χ︷︸︸︷
X

V︸ ︷︷ ︸
synthesis in

concentration units

− µ× n

V︸ ︷︷ ︸
degradation in

concentration units

= k − µ× c (6.4)

The last equation is an insightful result; it arises from a basic description of
exponential growth and it is indeed the simplest equation that one would write
for protein synthesis with a constant rate k and the ”growth-dilution effect”,
which lowers the concentration c in time at rate µ×c. Dilution by growth means
that the concentration of a protein decreases due to volume growth of the cell.
This concentration reduction needs to be compensated for by protein synthesis
to maintain a fixed protein concentration.

Say, a population of cells is growing exponentially and we suddenly induce
the synthesis of a protein at a cell state where the concentration of this protein
is zero. So, we have,

d

dt
c = k − µ× c

c(0) = 0 (6.5)

We can solve this equation by hand to give rise to2,

c(t) =
k

µ

(
1− e−µ×t

)
=
k

µ

(
1− 1

eµ×t

)
(6.6)

So, for large times the concentration becomes constant and reaches a steady
state value cs = k

µ because then 1
eµ×t ≈ 0. Therefore, while the cells are

growing the concentration of this protein eventually becomes constant! This
is the basis of the statement of steady-state metabolism at exponential growth
and this is what makes exponential growth the best-defined growth state of cells;
simply because it gives rise to the same protein concentration in independent
experiments as long as the cells continue to grow exponentially. So, we have

c(t) = cs
(
1− e−µ×t

)
(6.7)

To capture how long it takes to reach the steady state protein concentration we
determine the half time,

c(t1/2)

cs
=

1

2
= 1− e−µ×t1/2 ⇒ t1/2 =

ln 2

µ
(6.8)

This is another surprise: ln 2
µ is also the generation time of the cells denoted

by tg.
3 The generation time is the time between consecutive cell divisions and

2You can test your basic mathematics skills by solving this equation yourself.
3Cell growth is given by d

dt
X = µ × X such that X(t) = X(0)eµ×t and the generation

time, tg , is defined as
X(tg)

X(0)
= 2 = eµ×tg ; solving for tg gives ln 2

µ
.
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during this time the cell doubles its volume and divides. So, it appears that
several doublings are needed to reach the steady state. How many do we need
to reach 95% of the steady-state protein concentration?

c(t0.95)

cs
= 0.95 = 1− e−µ×t0.95 ⇒ t0.95 =

ln 0.05

−µ
Number of doublings:

t0.95

t1/2
= 4.3 (6.9)

So, after 4.3 doublings the concentration of the protein has reached 95% of its
final value. Thus, if E. coli doubles every hour you have to wait for about 4.3
hours.

So far, we have considered a protein that lives long, as its concentration
decreases only due to dilution by growth. If we contrast this situation with a
protein that is more unstable then equation 6.3 changes into,

d

dt
n = κ×X − kd × n (6.10)

such that equation 6.4 becomes,

d

dt
c =

1

V
(κ×X − kd × n)− µ× n

V
= k − (µ+ kd)× c (6.11)

Again the equation that one would expect. Solving it gives,

c(t) = cs

(
1− e−(µ+kd)×t

)
with: cs =

k

µ+ kd
(6.12)

Thus in this case t1/2 = ln 2
µ+kd

, which is a smaller time than the previous case

(then: t1/2 = ln 2
µ ). So, from this we can conclude that short-lived proteins

respond much faster than long-lived proteins. Short-lived proteins are mostly
regulatory proteins, such as transcription factors and signaling proteins, whereas
long-lived proteins are found most in metabolism and cellular growth. It makes
sense that the latter proteins live longer: i) they are most abundant, about
a 1000 fold, and their rapid turnover would introduce major costs for the cell
causing it to grow slower, and ii) their effects on the cell occur on the time scale
of the generation time, so having them only makes sense if they live at least as
long as the generation time. So, a protein with a very short life time reaches a
steady state earlier than one generation time!4

4In fact you can show that in this case t0.95 = ln 0.05
−(µ+kd)

= ln 0.05

−µ
(
1+

kd
µ

) = 1

1+
kd
µ

ln 0.05
−µ =

µ
µ+kd

ln 0.05
−µ . Accordingly, the required number of doublings becomes 4.3 × µ

µ+kd
and fast

degradation shortens the response time. If kd
µ

= 3.3 then 1 doubling is need to reach steady

state. So, a protein or mRNA with a life time of 10 minutes (such that kd = 1
10

min−1) and a

growth rate of ln 2
tg

= ln 2
60 min

= 0.005 min−1 reaches steady state within 4.3× 0.005
0.005+0.1

= 0.2

doublings which equals 12.3 minutes.
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Now we shift focus to a single cell. When it just arose out of a division of
its mother cell, its volume and molecule content is half of the volume and con-
tent of the mother cell. At the end of the generation time, this cell has doubled
its volume and molecule content and will divide itself. Let’s look at this in a bit
more detail. We know that immediately after division the number of protein
molecules equals n0 =

ntg
2 with tg as the generation time; so, have

d

dt
n = κ

n(0) = n0

(
=

1

2
n(tg)

)
(6.13)

Solving this gives,
n(t) = n0 + κ× t (6.14)

We know that:

n(tg) = 2× n0 = n0 + κ× tg ⇒ tg =
n(0)

κ
=

ln 2

µ
(6.15)

So, we can conclude:

n(0) = ln 2× κ

µ

n(tg) = 2× n(0) = 2× ln 2× κ

µ
(6.16)

What is meaning of κ
µ? It is the mean number of protein molecules, ns, that

you find in a growing population of cells, because

cs =
k

µ
=
X

V

κ

µ
= number of cells× steady-state number of molecules per cell

total cell volume
(6.17)

So, again using elementary relations and a little mathematics tells you a lot: at
exponential growth,

1. the total number of cells, total number of molecules and total cell volume
increase exponentially,

2. the protein concentration remain fixed at cs = k
µ ,

3. it takes 4.3 doubling to reach 95% of the protein concentration steady-
state when you induce a gene at steady state growth that encodes for a
stable protein,

4. short-lived proteins reach their steady state much faster than stable pro-
teins, and

5. after cell division the number of protein per cell equals ln 2×ns = 0.69×ns
and at the time of division the number of molecules is 2 ln 2ns = 1.39×ns
while the average number of molecules per cell in an exponentially growing
population is ns = κ

µ .
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Figure 6.2: Overview of whole-cell metabolism. Thousands of enzyme-
catalysed reactions are involved in metabolism that together make all the cellular
components of a new cell.
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Figure 6.3: Regulation of metabolism. Transcription factor activity is de-
pendent on concentrations of intracellular molecules. In this way, the gene
expression of metabolic enzyme is adjusted to the demand of the cell. Within
metabolism itself, regulatory interactions between metabolites and enzymes give
rise to feedback and feedforward circuitry giving rise to fast adjustments of en-
zyme rates.

6.3 Steady state metabolism

The entire metabolism of a cell is the complete set of reactions (generally catal-
ysed by enzymes) that produce all cellular components from nutrients supplied
in the growth medium. At exponential growth, the composition of a daughter
cells is doubled within one generation time which requires the uptake of nutri-
ents and their conversion into cellular building blocks, such as DNA, RNA, and
protein. The metabolic network that achieves this is composed out of hundreds
to thousands of enzymes – depending on the organism and the growth conditions
(figure 6.2).

We have already seen in the previous section that all molecules reach a
steady state concentration during exponential growth. The time that this takes
depends on the life time of these molecules. So, after a change in a nutrient
concentration, the perception of this change by the cell and the induction of
a response, it may take several generation times before the cell has attained a
new steady-state growth state. Changing enzyme concentrations requires the
regulation of gene expression activity as shown in figure 6.3.

We will limit ourselves to metabolism at steady state. In this state, the rate
of synthesis of all metabolites (the reactants) equals their degradation rates. So,

95



Chapter 6. Metabolism and cell growth Systems Biology

for instance for glucose-6-phosphate (G6P) in figure 6.4 we have at steady state
that,

d

dt
g6p = vHK − vPGI − vPGM1 − vTPS1 = 0 (6.18)

with the v’s as the rates of the reactions catalysed by HK, PGI, PGM1, and
TPS1. And for pyruvate (PYR),

d

dt
pyr = vPYK − vPDC = 0 (6.19)

The mass balance equations for all reactants are zero at steady state. This
is achieved because all the reactant concentrations reach values such that all
balance equations are zero. Such a steady state is often an ”attracting state”
such that for all initial conditions a steady state is reached after some time of
dynamics of reactant concentrations.

When changes in enzyme concentrations occur, due to changes in gene activ-
ity or protein degradation, the steady state of metabolism is perturbed and the
balances no longer equal zero such that some metabolites concentrations increase
whereas others drop. Eventually, when the enzyme concentrations have attained
fixed values, the reactant concentration converge to their steady state values and
the rates of reactions become fixed. So, metabolism moves in principles from
steady state to steady state. Such transitions are induced by environmental
changes such as nutrient changes.

6.4 Metabolic pathway expression is regulated
by demand

Cells, in particular those that compete with others for nutrients, tend to express
only the enzymes that they need for growth. This strategy reduces wasteful
usage of resources and makes sure that the enzymes that are expressed are
being used. In this manner, cells attain high growth rates and become good
competitors when they compete for nutrients. To understand this argument you
have to realise the risk of extinction that an organism takes when it expresses
the wrong enzymes and grows at a rate that is 1% slower than a competitor.
The dynamics of the number of fitter cell, nf over the less-fit cells, nl, is most
easily found when we realise that,

nf (t) = nf (0)× eµf×t
nl(t) = nl(0)× eµl×t
nf (t)

nl(t)
=

nf (0)× eµf×t
nl(0)× eµl×t =

nf (0)

nl(0)
× e(µf−µl)×t (6.20)

So, the ratio of fitter over less-fit cells increases exponentially in time! This
ratio doubles every ln 2

∆µ time units! So, if the ratio starts at 1, the generation

time of the fast cell is 1 hour, and the slow cell grows 1% slower, such that
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Figure 6.4: Glycolysis: the best understood metabolic pathway. Full
arrows indicate reaction catalysed by enzymes. So the second reaction from the top
is catalysed by hexokinase (HK): Glc + ATP 
 ADP + G6P with Glc as glucose,
and G6P as glucose-6-phosphate. The activity of hexokinase is inhibited by trehalose-
6-phosphate as indicated by the dashed arrow. Glycolysis is the pathway drawn at
the left whereas the reactions at the right – emanating from G1P are involved in the
synthesis of glycogen and trehalose. Metabolites are the substrates and products of
reactions.

∆µ = 0.001 min−1, then after 10 × ln 2
0.001 min = 6600 min = 4.6 days, the

ratio has grown to 210 = 1024. We started at 50% of each phenotype and
after 4.6 days the less-fit cell makes up about 0.1% of the population. Thus,
expressing proteins in such a way that the highest growth rate is achieved makes
a lot of sense, because competition at exponential growth rate makes you loose
fast! Therefore, cells should sense their environment actively, express metabolic
pathways only when needed, and tune enzyme levels to prevent overexpression.
This we call ”metabolic pathway expression by demand”.

In a perfect world, cells achieve optimal states but they may not do so in
reality; because of all kinds of reasons, but one can easily imagine that optimal
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states are hard to reach by evolutionary changes and that trade-offs occur. A
trade-off means that if an organism is good at carrying out one task it is the
same time bad at another. If trade-offs are strong then they provide a driving
force for speciation in evolution.

A well-known example of metabolic pathway expression by demand is so-
called diauxic growth; first studied in detail by Jacques Monod, François Jacob,
and André Wolff which got them the Nobel Prize for Physiology and Medicine
in 1965. Diauxic growth means sequential growth where one ”preferred nutri-
ent” is consumed prior to the second. This requires a repression of the preferred
nutrient metabolism when the metabolism of the second nutrient is induced.
This takes time and the growth of an organism therefore can display a lag
phase. Figure 6.5 shows Monod’s 1965 visualisation of diauxic growth with
varying durations of lag phase in his Nobel lecture (available from: http://www.
nobelprize.org/nobel_prizes/medicine/laureates/1965/monod-lecture.

pdf). The mechanism of repression is quite well understood in molecular terms
for the glucose-lactose diauxy of E. coli. The activity of the genes encoding the
enzymes for lactose metabolism and transport are all part of the so-called lac
operon. We have earlier studied this system (figure 5.9) and concluded that this
operon is active when the lactose concentration is high and the glucose concen-
tration is low. So, at high glucose and high lactose concentration, this operon
is off. Thus, E. coli prefers glucose over lactose and will first consume glucose
and subsequently lactose when it grows in the presence of both.

E N Z Y M A T I C  A D A P T A T I O N  A N D  A L L O S T E R I C  T R A N S I T I O N S  1 8 9

80

Fig.1. Growth of Esherichia coli in the presence of different carbohydrate pairs serving as
the only source of carbon in a synthetic medium50.

Gale had published several papers on this subject before 1940. [See ref. I for a
bibliography of papers published prior to 1940]

Lwoff’s intuition was correct. The phenomenon of "diauxy" that I had
discovered was indeed closely related to enzyme adaptation, as my experi-
ments, included in the second part of my doctoral dissertation, soon convinced
me. It was actually a case of the "glucose effect" discovered by Dienert as early
as 1900, today better known as "catabolic repression" from the studies of
Magasanik 2.

The die was cast. Since that day in December 1940, all my scientific activity
has been devoted to the study of this phenomenon. During the Occupation,
working, at times secretly, in Lwoff’s laboratory, where I was warmly re-
ceived, I succeeded in carrying out some experiments that were very signifi-
cant for me. I proved, for example, that agents that uncouple oxidative phos-
phorylation, such as 2,4-dinitrophenol, completely inhibit adaptation to
lactose or other carbohydrates3. This suggested that "adaptation" implied an
expenditure of chemical potential and therefore probably involved the true
synthesis of an enzyme. With Alice Audureau, I sought to discover the still
quite obscure relations between this phenomenon and the one Massini, Lewis,
and others had discovered: the appearance and selection of "spontaneous"
mutants (see ref.1). Using a strain of Escherichia coli mutabile (to which we had
given the initials ML because it had been isolated from Andre Lwoff’s intes-

Figure 6.5: Diauxic growth figure from Monod’s Nobel prize lecture in
1965.
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6.5 Regulation of metabolic enzyme activity

In addition to gene regulation of the activity of metabolic enzymes, which gives
rise to changes in their concentration, metabolic enzyme activity is regulated
by the concentrations of reactants and effectors. Effectors are molecules that
are not converted by the enzymes that they regulate. So, AMP is an effector of
PFK in figure 6.4. Taken together, enzyme activity, v, is effected by metabolic
and gene regulation,

v = Vmax ×
s

KM + s
= kcat × e×

s

KM + s
(6.21)

The total enzyme concentration, eT , is regulated by gene expression. This total
concentration is either the same or higher than the concentration of enzyme
that carries out catalysis of the reaction, e. The ratio of e

eT
can be controlled

by effectors. Effector can also influence the KM of the enzyme – so, the affinity
( 1
KM

) of the enzyme for its substrate – or the kcat.

6.6 Which metabolic enzyme should be regu-
lated?

Now that we know that effectors and gene expression can both influence the
rate of metabolic enzymes, we need to better understand what characterises
an enzyme that should be regulated by either of these two mechanisms. This
is a relevant question because we know that not all metabolic enzymes are
regulated by effectors. Why are only some metabolic enzymes subject to effector
regulation and others not? Generally, the function of a metabolic pathway is to
generate its product at a certain rate. Regulation occurs to tune this rate with
respect to the environment or other intercellular processes; so, to tune pathway
activity to its demand. We limit ourselves to steady state again.

So, the question we ask is: ”Which enzyme in the metabolic pathway is the
best target for a regulatory interaction with an effector molecule to bring about
a desired change in steady-state pathway flux?”. For convenience, we denote the
steady-state flux by J . Clearly, the regulated enzyme should have an influence
on the flux when its rate is changed by the effector molecule. If this does not
hold in general for all enzymes in the pathway then we can already exclude these
enzymes. Several simple situations can occur:

1. When the first enzyme activity is not inhibited by the concentra-
tion of its product. In general, enzymes are inhibited by their product
concentration; for instance,

Reaction: S 
 P

Enzyme rate equation: v = Vmax

s
Ks

1 + s
Ks

+ p
Kp

(6.22)
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the rate v of conversion of S into P decreases with the product concen-
tration. However, if this is not the case for the first enzyme in a pathway
then this enzyme sets the flux through the pathway. Then this enzyme
acts like a pump and continuesly ”pumps” product into the pathway. So,
a change in flux can only be achieved by an activity change of the first
enzyme in the pathway.

2. When one enzyme in the pathway has a much lower maximal
rate. An enzyme cannot catalyse a reaction faster than its maximal rate,
its Vmax. If one of the enzymes has a much lower Vmax than all others and
the pathway flux is nearly equal to this Vmax-value then this enzyme has
the largest influence on the flux when its activity is regulated. Also this
can be intuitively understood. This enzyme works at maximal capacity
and a decrease in this Vmax will lead to an almost proportional change in
the flux (J); since, Vmax ≈ J .

3. Enzymes that are in great excess such that Vmax >> J have
no influence on the flux. This follows immediately from the previous
argument.

6.7 Quantification of metabolic enzyme suscep-
tibilty for regulation

From the last section it has become clear that enzymes that are suitable as
regulatory targets should have an influence on the flux when their rate is changed
by a regulator; so, a change in a regulator concentration of this enzyme should
bring about a change in the flux,

∆[regulator]
1−→ ∆ enzyme activity

2−→ ∆J (6.23)

When ∆J
∆[regulator] is high then this regulator is very potent and the enzyme

affected by the regulator is a potent regulatory target. The regulator can be the
enzyme concentration – in case of gene expression regulator – or a concentration
of an effector – e.g. in case of regulation by metabolic feedback.

Let’s start with the enzyme case (gene expression regulation): so, the in-

fluence ∆ enzyme activity
2−→ ∆J . An enzyme is very susceptible to regulation

if the value ∆J
∆[enzyme] for this enzyme is large. This is often quantified by a

so-called flux control coefficient [7]5 – defined for (differentially) small change
in enzyme concentration;

dJk
Jk

=
ei
Jk

∂Jk
∂ei

dei
ei

⇒ d ln Jk =
∂ ln Jk
∂ ln ei︸ ︷︷ ︸

flux control
coefficient, C

Jk
i

d ln ei (6.24)

5This is a great paper and definitely worth reading! An updated version of this original
work was published in 1995 [8].

100



Systems Biology Chapter 6. Metabolism and cell growth

Different scenarios for the control of flux by enzymes are shown in figure 6.6.

Figure 6.6: Changes in enzyme concentration can have variable influ-
ences on metabolic pathway flux. A. The sensitivity of the flux through a
metabolic pathway J can depend on the concentration of the enzyme; rule of thumb:
when an enzyme is increased in concentration its influence on the flux decreases. B.
Some enzymes have no effect on the flux at all.

The influence of a regulator on the rate of the enzyme ∆[regulator]
1−→

∆ enzyme activity is quantified by a so-called elasticity coefficient of the en-
zyme (with r =[regulator]) [7],

dvi
vi

=
r

vi

∂vi
∂r

dr

r
⇒ d ln vi =

∂ ln vi
∂ ln r︸ ︷︷ ︸

elasticity
coefficient, ε

vi
r

d ln r (6.25)

To determine this coefficient we make the same curves as shown in figure 6.6
but then with ln v on the y-axis and ln r in the x-axis and determine the slope.

Finally, an enzyme is susceptible to regulation if both CJi and εvir are high;
in fact, the flux response to a regulator is,

d ln J = CJi ε
vi
r d ln r ⇒ multiplication of two slopes (6.26)

In other words, we found that:

d ln[regulator]︸ ︷︷ ︸
fractional change

in regulator
concentration

εvr−→ d ln enzyme activity︸ ︷︷ ︸
fractional change

in enzyme
activity

CJv−−→ d ln J︸ ︷︷ ︸
fractional change

in flux

(6.27)

This causal chain of events in the quantification of the qualitative description in
equation 6.23. Enzyme properties – ”biochemistry” – sets the first sensitivity
coefficient εvr whereas the second sensitivity coefficient CJv is set by the entire
metabolic network; so, the kinetic properties of all the enzyme in the network!
Other interesting aspects about the functioning of metabolic systems can be
found in Hofmeyr & Cornish-Bowden [6].
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Figure 6.7: Example of a branched metabolic network. Arrows denote
enzyme catalysed reactions, underlined metabolites are held fixed to allow for a
steady state, and all reactions are reversible. Reaction rates are positive when
mass flows from left to right.

X
SUPPLY DEMAND

NEGATIVE 
FEEDBACK

Figure 6.8: Supply-demand model of metabolism with a negative feed-
back loop. The green reactions preceding the feedback metabolite x together from
the supply system and the demand system comprises the reactions following x. The
concentration of x inhibits a reaction in the supply system.

6.8 Exercises

1. Synthesis of cellular components by metabolism and adaptations
of metabolism upon a nutrient change. Metabolic networks are com-
posed out of hundreds to thousands of coupled reactions that together syn-
thesise cellular components from extracellular nutrients. Metabolic map
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S P
1 2 3 4 5

X1 X2 X3 X4

Figure 6.9: Principles of a metabolic pathway. Enzyme biochemistry dictates
that the rate of every metabolic enzyme is generally activated by its substrate and
inhibited by its product. The rate of the enzyme therefore increases when the substrate
concentration rises and decreases when the product concentration rises.

visualisation are a very human-friendly tool to get an impression of the
metabolic activity of an entire cell. Maarleveld et al. [17] have published
a framework for visualisation of metabolic networks together with exper-
imental data, such as transcript levels and rates of metabolic reactions,
and computational results. The map was made for the metabolism of the
cyanobacterium Synechocystis spp. PCC 6803 used for biofuel production
in biotechnology. We will the map of this microorganism to study a few
properties of metabolic networks.

(a) First use Wikipedia to learn a bit more about cyanobacteria. How
do they acquire energy? Why does their metabolism resemble the
metabolism of plants? How do they survive during the night?

(b) Study the metabolic map of Synechocystis spp. PCC 6803 when
it is growing on carbon dioxide (CO2) by downloading it from
http://bruggemanlab.nl/?page_id=229 and opening it in a pdf-
reader. Find the biomass reaction on the map; this the reaction
that makes biomass and has on the right hand side of the reaction
arrow: ”Biomass specific growth rate” and on the left hand side of
this arrow the cellular components. The value above the arrow is
the growth rate of Synechocystis spp. PCC 6803 in units hr−1. The
synthesis fluxes of the cellular components are the numbers above
their synthesis arrows and have as unit mmol

gram cells×hr .

i. Calculate the generation time of the bacterium.

ii. How much protein, DNA, RNA, and lipid in mmol per gram
biomass per generation time needs to be synthesised by this bac-
terium?

iii. Identify the molecular precursors of DNA and RNA by scanning
the metabolic network for reactions that have DNA or RNA as
product and writing down the substrates – which are the molec-
ular precursors – of those reactions. What is the main difference
between the RNA and DNA precursors?
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iv. Use the metabolic map to figure out what the main molecular
components of lipids are.

(c) Study the metabolic map of Synechocystis spp. PCC 6803 when it is
growing on glycogen by downloading it from http://bruggemanlab.

nl/?page_id=229 and opening it in a pdf-reader. Does the organism
grow faster all slower on glycogen than on carbon dioxide? Which
parts of metabolism change in activity when this organism shift from
carbon dioxide to glycogen growth?

2. Measurement of the promoter activity of genes during steady-
state cell growth (Advanced question). Keren et al. [11] have mea-
sured the promoter activity of thousands of genes in E. coli and S. cere-
visiae during steady-state exponential growth at different nutrient sources.
Although this is not immediately clear form their text, they determined
the rate constant k = κ× X

V as defined in equation 6.4 upto a factor. So
they determined k×α with α as a constant, its meaning because clear be-
low. We know that at steady state: k = µ×cs. Keren et al. [11] measured
the growth rate µ and the fluorescence ”concentration” α×cs = fluorescence

OD
(with OD as the optical density and proportional to total cell volume);
the following argument shows that fluorescence per OD is proportional to
a protein concentration,

total fluorescence (f)

OD
=

fluorescence
cell × number of cells

volume
cell × number of cells

=

fluorescence
protein × protein

cell

volume
cell

=
fluorescence

protein︸ ︷︷ ︸
α

× protein

volume︸ ︷︷ ︸
c

(6.28)

(a) Show that the equation used by Keren et al. [11] (shown in Figure
1),

promoter activity = ρ =
f(t2)− f(t1)∫ t2
t1
OD(t)dt

(6.29)

indeed equals α× cs × µ when the cells grow exponentially. So, they
really measured the promoter activity as α× k.

(b) They compared the promoter activity of each gene at two different
growth conditions, say growth on glucose in mineral medium (condi-
tion A) versus growth in the same medium supplemented with amino
acids (condition B) (Figure 2C in [11]). They found that two classes
of promoter activity differences can be distinguished: i) class 1: gene
activity giving rise to the same fluorescence concentration at steady
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state at the two different conditions despite a different growth rate
and ii) class 2: where the fluorescence concentration and the growth
rate are both different between the two conditions. Show that all the
class 1 promoter activities fall on the same line in a plot of ln kA (so,
promoter activity at condition A) as function of ln kB and that this
line is described by:

ln kB = 1︸︷︷︸
line

slope

× ln kA − (lnµA − lnµB)︸ ︷︷ ︸
∆ lnµ, intercept of the line

. (6.30)

(c) Why do class 2 genes not fall on this line?

(d) How would you characterise class 1 and class 2? So, what is their
main difference?

3. Metabolism and growth responses of single cells exposed to nu-
trient changes. Read the abstract of the following five papers:

i) A Solopova, J van Gestel, F J Weissing, H Bachmann, B Teusink,
J Kok, and O P Kuipers. Bet-hedging during bacterial diauxic shift.
Proc Natl Acad Sci U S A, 111(20):7427–7432, May 2014

ii) O Kotte, B Volkmer, J L Radzikowski, and M Heinemann. Pheno-
typic bistability in escherichia coli’s central carbon metabolism. Mol
Syst Biol, 10(7):736–736, 2014

iii) J H van Heerden, M T Wortel, F J Bruggeman, J J Heijnen, Y J
Bollen, R Planqué, J Hulshof, T G O’Toole, S A Wahl, and B Teusink.
Lost in transition: start-up of glycolysis yields subpopulations of non-
growing cells. Science, 343(6174):1245114–1245114, Feb 2014

iv) P J Choi, L Cai, K Frieda, and X S Xie. A stochastic single-
molecule event triggers phenotype switching of a bacterial cell. Sci-
ence, 322(5900):442–446, Oct 2008.

v) A Schwabe and F J Bruggeman. Single yeast cells vary in transcrip-
tion activity not in delay time after a metabolic shift. Nat Commun,
5:4798–4798, 2014

What do these papers tell you about the responses of single cells to nu-
trient changes? Do all cells respond the same or are single cell responses
(unexpectedly) variable between individual cells? What do you think can
be origin of the differences between single cells responses to environmental
changes?

4. What sets the maximal growth rate of a bacterium? During
steady-state exponential growth – ‘balanced growth’ – the total number of
cells, N , increases exponentially in time as N(t) = N(0)eµt with µ as the
specific growth rate in hr−1. The total culture volume and total cell mass
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increase exponentially as well. Since metabolism is operating at steady
state during balanced growth, the concentrations of all molecular species
remain fixed over time such that the total number of molecules of every
molecular species increases equally fast as the total volume. If we focus on
the concentration of ribosome then we have the following balance equation
at balanced growth, with fribo as the ribosome synthesis rate per ribosome
and φribo as the fraction of ribosome that is synthesising ribosomes (i.e.
φribo = number of ribosomes synthesising ribosomes

number of ribosomes synthesising protein ),

d

dt
cribo = vsynthesis − µcribo = 0 (6.31)

= friboφribocribo − µcribo (6.32)

⇒ µ = friboφribo (6.33)

The last equation is a definition of the growth rate in terms of biochem-
istry.

(a) Calculate fribo in ribosomes per hour, given that a single ribosome
contains 7459 amino acids and that the translation rate is 20 amino
acids per ribosome per second.

(b) Calculate the maximal growth rate.

(c) How many doublings do you have per hour with this maximal growth
rate?

(d) Calculate the maximal doubling rate in doublings
hr .

(e) The experimentally-determined minimal doubling time (= minimal
generation time) that the bacterium Escherichia coli can attain
equals 20 min

doubling . Calculate the fraction of ribosome synthesising
ribosomes at this growth rate.

(f) In reality, φribo will always be smaller than 1 because the cell needs
always other proteins than ribosomes. Examples of the other proteins
are metabolic proteins that make amino acids out of nutrients, in
order to allow ribosomes making proteins. Therefore if φribo < 1
other proteins are made in addition to ribosomes, such that ribosomal

protein fraction of Φribo = [ribosomes]
[proteins] is smaller than 1. Show that the

fraction of ribosomes making ribosomes equals the ribosomal protein
fraction: φribo = Φribo.

(g) Relate the ribosomal protein fraction to the growth rate.

(h) In reality some percentage of the ribosomes is always inactive – they
are ‘maturating’ – such that the total ribosome concentration equal
the sum of active and inactive ribosome: cribo = cAribo + cIribo and

therefore µ = fribo
cAribo

cAribo+cIribo+cm
= fribo

cribo−cIribo
cAribo+cIribo+cm

= fr(Φribo −
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ΦIribo). When we use experimental data for E. coli to study the rela-
tionship between the ribosomal protein fraction (y-axis) as function
of the growth rate (x-axis), we find a linear relation (Figure 1A, in
Scott et al, Science, 2010). Use the µ = fribo(Φribo−ΦIribo) to identify
what the slope and intercept of this linear relation is.

(i) How does the previous relation change when we inhibit translation
using a translation inhibitor (chloramphenicol) that only affect fribo
(Figure 1B, in Scott et al, Science, 2010)?

5. Mass flow through a steady state metabolic network. Metabolic
networks are responsible for the synthesis of energy and precursor
molecules for the construction of cellular macromolecules such as proteins,
DNA, RNA and membranes. Metabolic networks are highly branched and
can contain upto thousands of reactions. Navigating through those net-
works is therefore not straightforward and computational tools are often
used to simplify this process. Since mass balance depend linearly on reac-
tion rates, we can use linear algebra to study these huge networks. This
linearity is reflected in the mass balance equations that depend on the re-
action rates as a linear function: dx

dt =
∑r
i=1 nivi, with the ni as a (positive

or negative) fixed stoichiometry coefficient, vi as a concentrations-depend
reaction rate and r as the number of the reactions in the network. The
relation would be nonlinear when, for instance, dx

dt =
∑r
i=1 niv

m
i , with m

as a number greater than 1 and then linear algebra would not be as use-
ful. In this exercise you will realise the consequence of this linear relation,
its use and how it relates to linear algebra. We study a simplified, toy
network that has particular illustrative features shown in figure 6.7.

(a) Give the mass balances of the variable metabolite concentrations.

(b) Consider the network at steady state with reaction rate 1 equal to 10
mM
min . Give the reaction rate values of the reactions when the effluxes

are equal to v6 = 5 mM
min , v4 = 2 mM

min , and v10 = 3 mM
min .

(c) Think a bit more about the cycle, containing reaction 8 and 9, why
do you not know their rates at steady state when you only know
v1, v4, v6, and v10?

(d) Say you would know reaction rates v3 , v5 , v7 and v9 would this allow
you to unambiguously determine all flux values?

(e) Another way to look at mass flow through this network at steady
state is as if it is the superposition of 4 subnetworks, which each
can attain a steady state on their own. Which reactions would those
subnetworks contain?

(f) The flux vector j of this network is defined as the vector that contains
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all the values of the reaction rates, so

j =



v1

v2

v3

v4

v5

v6

v7

v8

v9

v10


(6.34)

Write down the flux vectors, ji of the 4 subnetworks, each having
1 column and 10 rows, and put zeros at entries that correspond to
reactions that are not used in this subnetwork.

(g) Now the statement is that the following relation holds,

j =

5∑
i=1

αiji (6.35)

with αi as the contribution of the subnetwork to the flux through the
entire network. Use the flux vector that you have identified in (b) to
find the values of αi when you set all the rates in the subnetworks to
1.

(h) Do the αi values change when the effluxes change in value?

6. Operon organization in bacterial genomes. Genes are often con-
tained in groups, called ‘operons’, in bacterial genomes. Consider again
figure 6.7. We do not really understand why operon structure is as it is,
one hypothesis worked out in this exercise. We know however that this
cannot be the whole story because of all kinds of processes that distort
the gene order on bacterial genomes such as horizontal gene transfer and
because of gene shuffling due recombination events to transposons.

(a) Why would it make sense to have enzyme 5 and 6 in one operon and
3 and 4 in another? Why are those two operons expected not to have
enzyme 2 in it?

(b) Why are enzyme 1 and 2 most likely not in the same operon?

(c) If the cycle has an additional function, not related to this pathway,
then it is expected be part of a different operon. Why could reaction
7 and 10 then still be part of the same operon?

(d) What is the assignment of metabolic-enzyme genes into operons lead-
ing to the smallest number of operons (and the smallest number of

108



Systems Biology Chapter 6. Metabolism and cell growth

genes; so do not use the same gene twice) that still allows for complete
flux flexibility through the network?

(e) Why do you think – because I (Frank) do not know the answer – that
genes do not occur in multiple copies such that they can participate
in different operons?

7. Why some enzymes couple ATP hydrolysis to biochemical con-
versions. In metabolism, many reactions are coupled to the hydrolysis
of ATP into ADP and Pi. In this question you will study why this is so
common. Consider the following reactions,

S
1−⇀↽− P, v1 = V1,MAX

s ·
(

1− p
s·Keq,1

)
1 + s+ p

S +ATP
2−⇀↽− P +ADP + Pi, v2 = V2,MAX

s · atp ·
(

1− p·adp·pi
s·atp·Keq,2

)
(1 + s+ p) (1 + pi) (1 + atp+ adp)

The difference between reaction 1 and 2 is that enzyme 2 couples the
hydrolysis of ATP to the formation of P out of S and enzyme 1 does
not do this. The following constraints apply in the cell: i. P should be
formed out S to allow for growth, ii. in the cell, the concentrations of P ,
S, ATP , ADP , and Pi fall within strict physiological bounds, they all
vary between 0.1 and 10 mM, iii. the equilibrium constant of reaction 1
equals Keq,1 = 10−3 and for reaction 2 it equals Keq,2 = 103 mM . (In this
question, do not consider that at the level of this reaction the adenosine
and phosphate in ATP , ADP and Pi remain fixed.) Show that reaction
2 can form P out of S inside the cell and that reaction 1 cannot achieve
this.

8. Regulation of flux at branch points in metabolism. In metabolism
it occurs very often that a metabolic pathways branches into two di-
rections. The balance for the metabolite concentration at this junction
equals, the difference between the synthesis rate v and the two consump-
tion rates v1 and v2 corresponding to the branch rates.

dx

dt
= v1 − v2 − v3 (6.36)

v1 = V1

s
Ks

1 + s
Ks

+ x
K1

(6.37)

v2 = V2
x

K2 + x
(6.38)

v3 = V3
x

K3 + x
(6.39)
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At steady state we denotes rates as fluxes and we get,

0 = J1 − J2 − J3 (6.40)

v1 = J1 (6.41)

v2 = J2 (6.42)

v3 = J3 (6.43)

x = xs (6.44)

⇒ V1

s
Ks

1 + s
Ks

+ xs
K1

= V2
xs

K2 + xs
+ V3

xs
K3 + xs

(6.45)

Set s = 10, Ks = 1, V1 = 10, K1 = 10, V2 = 10, K2 = 1, V3 = 10 and
K3 = 10.

(a) Use a plotting program, e.g. Excel, to plot the rates of the reaction
as function of x. Determine the steady state value of x.

(b) Plot the ratio v2/v3 as function of x. Why is reaction 2 more active
than 3 at low concentrations of X? Explain your result.

(c) Double the maximal rate of third reaction. What happens to the
steady state flux and the concentration of x? Explain you result.

(d) Half the maximal rate of third reaction. What happens to the steady
state flux and the concentration of x? Explain you result.

(e) What happens when you reduce K3 by a factor of 2? Explain your
result.

9. Supply and demand analysis of metabolic pathways. Negative
feedback occurs often in metabolic pathways. The negative feedback
metabolite cuts the pathway into blocks or systems: a supply and a de-
mand system (figure 6.9). In this exercise you will study the basic con-
sequences of negative feedback in metabolic pathways, using a simplified
model that captures the main effects of negative feedback,

dx

dt
= Vs

1

1 +
(
x
K

)n︸ ︷︷ ︸
supply rate

− Vd
x

1 + x︸ ︷︷ ︸
demand rate

(6.46)

The basic parameter setting is that all parameters equal 1. In all plots
below, plot always the supply rate and the demand rate.

(a) Investigate the influence of n. Use Excel to plot the supply rate and
degradation rate as function of x. Vary n: set it to 1, 2, 4, 6, and 8.

(b) Investigate the influence of K. Set n to 4 and vary K: set it to 0.1,
0.5, 1, 2, 4.
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(c) Investigate the influence of V1. Set n to 1 and to 6. Vary for those
two cases V1: set it to 0.5, 1, and 2.

(d) Investigate the influence of V2. Set n to 1 and to 6. Vary for those
two cases V2: set it to 0.5, 1, and 2.

(e) Is it true that the effect of a strong feedback is that the concentra-
tion of x hardly changes when changes are made to either V1 or V2

(metabolite homeostasis)? And that the influence of the maximal
rate of the demand system on the steady-state flux can greatly ex-
ceed that of the supply system if metabolite homeostasis occurs (flux
control by demand)?

Metabolite homeostasis and flux control by demand have been identified
as the main functional consequences of negative feedback in metabolic
pathways.

10. Steady-state responses of metabolic pathways to changes in
metabolic enzyme concentration through gene expression. When
the environment changes many metabolic pathways are adapted to the
new condition via increased or reduced expression of genes coding for
metabolic enzymes.

(a) Say the steady-state flux in the pathway increases because the first
enzyme is increased in concentration. What happens to the steady
state concentrations of X1, X2, X3 and X4?

(b) Consider the change in the steady state of the metabolic pathway
when enzyme 2 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?

(c) Consider the change in the steady state of the metabolic pathway
when enzyme 3 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?

(d) Consider the change in the steady state of the metabolic pathway
when enzyme 4 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?

(e) Consider the change in the steady state of the metabolic pathway
when enzyme 5 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?

11. A different look at a classical metabolic pathway: glycolysis in
yeast Central to most biochemical pathways is glycolysis, the breakdown
of glucose to pyruvate in 10 enzymatic steps. The details of the pathway
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can be looked up in any textbook of biochemistry, or on wikipedia. Here
we simplify and look at some interesting aspects from a systems biology
point of view. The simplified pathway is depicted in figure 6.10

(a) make a stoichiometry matrix N of this pathway: take glucose and
pyruvate fixed, so they do not need to be balanced and are therefore
not part of the matrix. Each row represent a balance for a metabolite,
each column correpsonds to a reaction, such that N · v form the set
of balances for this system.

(b) apply Gaussian elimination on this matrix to transform it into its
reduced row echelon form and decide on the number of row depen-
dencies in this pathway. Think about what such a row dependency
means in biochemical terms. For example, you should readily see
that the rows for ATP and ADP sum up to 0 (and so these two rows
are dependent). What does this mean? Provide a similar explanation
for the other dependency.

(c) in the reduced row echelon form you can read off the solution to the
equation: N · v = 0. This will give you dependencies between the
steady state rates, which we call fluxes.

(d) Show that indeed, in steady state, glycolysis yields 2 ATP per glucose
So we can conclude that v5, the rate of ATP expenditure, is two times
the rate of glucose conversion, v1. So 2 ATP was made per Glc.

(e) Sketch the solution space (or null space) of this system in the v1,v5
plane under the constraints that v1 > 0 and v5 > 0.

(f) inspect in the reduced row echelon form of N what would happen
if you would not have reaction 5 in, i.e. no reaction that consumes
ATP? Do this by simply removing the last column of N . Link the
mathematical consequence to biochemical reasoning: can ATP be in
steady state, then, and why (not)?

(g) now we will inspect a peculiar state that glycolysis get in. We put
v5 back in, and let’s assume that v2 and v3 act really fast and FbP,
DHAP and GAP form one pool, and effectively v1 produces 2 GAP
molecules. v2 and v3 are then simply thrown out of the model. We
remain with 3 reactions with the following kinetics:

v1 = Vm1 ·Glc
atp

atp+ 0.5
(6.47)

v4 = Vm4
gap

gap+ 1
(6.48)

v5 = k5 · atp (6.49)

Suppose now that Vm4 is really low, say 0.1 (in reality this is caused
by a low inorganic phosphate concentration whose action we model
through Vm4). Vm1 and k5 are set to 1.
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i. in this state gap will accumulate to very high levels because of
the low activity of Vm4. What will then be the rate of v4?

ii. construct a rate characteristic by plotting ATP production (v4)
and ATP consumption (v1 + v5) as a function of atp. Where is
the steady state, at what flux and atp concentration?

iii. now we look at the balance for gap: this now reads (with v2 and
v3 removed): dgap

dt = 2v1− v4. Now construct a rate character-
istic around gap (at the steady state atp level from the previous
question!): what is your conclusion?

12. Can gene expression optimise the flux through a metabolic net-
work under a constraint of fixed maximal enzyme available for
investment in the metabolic network? As biologists we are all famil-
iar with gene activity regulation leading to changes in protein concentra-
tions as function of conditions. We accept this as a fact. Why the gene
regulation functions as it does is however generally not clear. Some would
argue that the gene regulation mechanisms have evolved to maximise fit-
ness of the bacterium. Here we explore the consequences of this hypothesis
and ask whether gene regulation can maximise the fitness of a metabolic
pathway. We define the fitness of metabolic pathway as its steady state
flux divided by the total enzyme amount invested in this pathway. The
gene regulation mechanism should maximise the fitness as function of ex-
ternal conditions. Does such a gene regulation mechanism exist? And
how does its parameterisation depend on the kinetics of the metabolic
enzymes? In this question you will answer those questions yourself, step
by step. We start by introducing the metabolic network, it is the simplest
that is still realistic and illustrates all the features of realistic networks
that are clearly involve hundreds of enzymes,

S
1−⇀↽− X

2−⇀↽− P (6.50)

v1 = e1 k1
s

1 + s+ x︸ ︷︷ ︸
f1(x)

= e1f1(x) (6.51)

v2 = e2 k2
x

1 + x︸ ︷︷ ︸
f2(x)

= e2f2(x) (6.52)

eT = e1 + e2 (6.53)

dx

dt
= v1 − v2 = k1(eT − e2)

s

1 + s+ x
− k2e2

x

1 + x
(6.54)

We denote the steady-state flux by J and it is defined by the steady-state
relation,

J = v1 = v2 (6.55)
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What we want to maximise is the fitness of the metabolic pathway, F ,

F =
J

eT
=

J

e1 + e2
(6.56)

So given the amount of enzyme available, eT , we ask for the distribution of
enzymes that maximises J , which is the same as saying that we maximise
J
eT

. Maximising J
eT

is the same as minimising eT
J .

(a) Show that eT
J obeys,

eT
J

=
1

f1
+

1

f2
=

1 + s+ x

k1s
+

1 + x

k2x
=

1

k1s
+

1

k1
+

x

k1s
+

1

k2x
+

1

k2

(6.57)

(b) When eT
J is minimal then d

dx

(
1
f1

+ 1
f2

)
= 0. Why is this true?

(c) Determine d
dx

(
1
f1

+ 1
f2

)
and solve for x. Call this x, the optimal x,

denoted by xo.

(d) Show that the relation v1
v2

= 1 leads to the relation e2 = eT
f1

f1+f2
=

eT
1

1+
f2
f1

.

(e) The problem now is that the previous relation is always true, also in

non-optimal states. However, the requirement that d
dx

(
1
f1

+ 1
f2

)
= 0

leads to an expression for f2
f1

that is only true in the optimal state,
because when x = xo we have,

0 =
d

dx

(
1

f1
+

1

f2

)
=

d

dx

1

f1
+

d

dx

1

f2
=
∂ 1
f1

∂f1

∂f1

∂x
+
∂ 1
f2

∂f2

∂f2

∂x
(6.58)

= − 1

f2
1

∂f1

∂x
− 1

f2
2

∂f2

∂x
= − 1

f1

∂ ln f1

∂x
− 1

f2

∂ ln f2

∂x

⇒ − 1

f1

∂ ln f1

∂x
=

1

f2

∂ ln f2

∂x
⇒ f2(xo)

f1(xo)
= −

∂ ln f2
∂x

∣∣∣
x=xo

∂ ln f1
∂x

∣∣∣
x=xo

(6.59)

Such that at the optimal steady state we have the relation e2 =

eT
1

1+
f2
f1

= eT
1

1−
∂ ln f2
∂x

∣∣∣
x=xo

∂ ln f1
∂x

∣∣∣
x=xo

. Determine −
∂ ln f2
∂x

∣∣∣
x=xo

∂ ln f1
∂x

∣∣∣
x=xo

and then the

equation for e2.

(f) The problem is that −
∂ ln f2
∂x

∂ ln f1
∂x

depends still on s, such that we have

relation that expresses e2 in terms of s and xo, and we would like to
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use this relation to choose a gene regulation mechanism that relates
e2 to x only, and not to s, because the gene regulation circuit depend
on x – for instance, because a transcription factor binds to x and
this transcription determines the synthesis of e2. Using the previous

relation, xo =
√
k1
√
s√

k2
, which holds in the optimum, we can express s

in terms of xo. What do we obtain for s and for e2?

(g) The relation that we have just found, i.e. e2 = eT
k1xo(1+xo)

k2x2
o+k1(1+xo)2 ,

relates e2 to xo; it is therefore a relation for e2,o! What should be
the mass balance for e2 to obey this relation at steady state?

(h) Remark, not a question: The statement is now that the following
coupled metabolic-transcription-translation system,

dx

dt
= k1(eT − e2)

s

1 + s+ x
− k2e2

x

1 + x
(6.60)

d

dt
e2 = eT

k1x(1 + x)

k2x2 + k1(1 + x)2
− e2, (6.61)

gives the optimal steady-state for every value of s! Because this sys-

tem always has as steady state: x =
√
k1
√
s√

k2
, which is the requirement

for optimality! Note that the k1x(1+x)
k2x2+k1(1+x)2 is very similar to a hyper-

bolic equation of x (you can verify by plotting it for different values
of k1 and k2), suggesting that a single transcription factor that binds
to X and to the DNA suffices for optimal regulation. In fact you can

rewrite this equation into x+x2

1+2x+
(
k2
k1

+1
)
x2

which sort of corresponds

to a model of cooperative binding of the transcription factor to the
promoter with two binding sites.

(i) Another remark: Another way of solving the problem of finding an
optimal gene regulation network is to find a e2 function that makes

sure that xo =
√
k1
√
s√

k2
. This e2 function, in terms of x, is then the

steady state input-output relation of the optimal gene regulation net-
work. How can you do this? Set dx

dt = k1(eT−e2) s
1+s+x−k2e2

x
1+x = 0

and solve for x. Set this equation equal to
√
k1
√
s√

k2
and solve for e2.

Then we have found an e2 steady state that is optimal. The problem
now is that this e2 equation is still in terms of s and not in terms x –
and we want the gene network to sense the metabolic state and not

the environmental state. To solve this, solve s from xo =
√
k1
√
s√

k2
and

substitute it in the equation in the e2 relation to arrive at one that
is in terms of x, and no longer in terms of s. This is bit faster than
what was suggested above.

(j) Another remark: note that since the objective is solely defined in
terms of metabolic properties, the parameterisation of the optimal
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gene network is ultimately completely set by metabolic properties
alone. So, the gene regulation is a ‘controller’ of the metabolic system
that has the right information of the metabolic system to be able to
steer it always to the optimum, regardless of the environment. Isn’t
that amazing? I think that is the right way of thinking about gene
regulation. However this shifts the problem to identifying what the
control objective, the fitness objective, is. It is certainly not always
J/eT . How to do that is still not clear to me (= Frank).

Glc 

DHAP 

FbP 

Pyr 
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2 ATP 

2 ADP 

GAP 

2 ATP 

2 ADP + P 
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ATP 

ADP 

5 
P 

Figure 6.10: Simplified glycolytic pathway. The pathway starts with adding
two phosphates on glucose to form fructose 1,6-bisphosphate (FbP), with ATP
as phosphate donor. FbP is split into two molecules, dihydroxyacetone phos-
phate (DHAP) and glyceraldeyhde 3-phosphate (DHAP), which are intercon-
verted very easily. GAP is subsequently converted into pyruvate in a number
of steps, by which two ATP molecules are made for each GAP molecule. P is
inorganic phosphate.

6.9 Key messages of this chapter

1. Metabolic activity is tuned towards the available nutrients as well as the
cellular requirements.

2. During balanced exponential growth, all concentrations are constant.
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3. The time before a newly synthesised protein reaches steady state during
exponential growth depends on the degradation rate constant. Stable
proteins require more than 4 generations to reach more than 95% of their
steady state concentration.

4. Change in metabolic gene expression depends on the metabolic and envi-
ronmental state, as shown by the lac operon.

5. Enzymes that are regulated in metabolism by metabolic intermediates are
both sensitive to those the concentrations of those intermediates and they
have an influence on pathway flux when changed in activity. Such rules-
of-thumb follow immediately from the theory associated with metabolic
control analysis.
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Chapter 7

Answers to exercises

7.1 Answers to exercises of Chapter 2

7.2 Exercise Section 2.3

1. In this chapter, we will be doing calculations with units. To practise,
answer the following exercises. Realise that this way of thinking is correct:
2 m3 = 2 × (10 dm)3 = 2000 dm3 = 2000 l (l is liter). You may have
to look up the meaning of f, µ, and p!.

(a) 1 m = 100 cm = 102 cm, 1 m2 = 1 × (100 cm)2 = 1002 cm2 =
10000 cm2 = 104 cm2, and 1 m3 = 1 (100 cm)3 = 1003 cm3 =
106 cm3

(b) 1 dm3 = 1 l, 1 cm3 = 1 (0.1 dm3) = 0.13 dm3 = 10−3 l, and 1 nm3 =
1 (10−9m)3 = 1 (10−9 × 10dm)3 = (10−8)3 dm3 = 10−24 dm3 =
10−24 l

(c) 1 fl = 10−15 l = 10−15 106 µl = 10−9 µl, 1 ml = 10−3 l, and
1 µl = 10−6 l = 10−61015 fl = 109 fl

(d) 1 mol = 6× 1023 molecules (Avogadro’s number), 1 µmol = 10−6 ×
6× 1023 molecules = 6× 1017 molecules, and 1 pmol = 10−12 × 6×
1023 molecules = 6× 1011 molecules

2. Assume that the average protein contains 300 amino acids.

(a) How many amino acids should a cell make during its cell cycle when
it contains 2× 106 proteins at birth?
Answer: a cell doubles itself from birth to division, so its needs to
make 2 × 106 proteins and this corresponds to 2 × 106proteins ×
300amino acidsprotein = 600× 106amino acids = 6× 108amino acids.

(b) Calculate how many nitrogen atoms occur on average in an amino
acid (use the first table on this Wikipedia page https://en.wikipedia.
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org/wiki/Amino_acid).
Answer: See Figure 7.1 and (4 + 3 + 2 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 1 +
1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 1 + 1)/21 = 30/21 = 1.4 nitrogen atom

amino acid .

(c) Given the previous two answers, how many ammonium molecules
(NH+

4 ) should a cell consume during its cell cycle?
Answer: Assuming that all amino acids occur evenly across all pro-
teins – they do not, but let’s not dwell on that – the number of
ammonium molecules requires equals:
6×108amino acids×1.4 nitrogen atom

amino acid × 1ammonium molecule
nitrogen atom = 6(1+

0.4)108ammoniummolecules = (6+2.4)108ammoniummolecules =
8.4× 108ammonium molecules.

(d) How much does that amount of ammonium weigh in femtograms?
Answer: One mol of NH+

4 weighs 14 + 4 × 1 = 18 gram, since the
molar weights of nitrogen and hydrogen are respectively 4 and 1
gram/mol. An amount of 8.4× 108ammonium molecules equals
8.4×108ammoniummolecules× 1

6×1023
mol

molecules = 8.4
6 10−15 mol ammonium

and this equals in femtograms 8.4
6 10−15 mol ammonium×18 gram

mol =
18×8.4

6 10−15gram = 18×8.4
6 fgram = 25.2 fgram.

3. The length of the DNA of E. coli, a bacterium, is 1.5 mm long, consists
of 4558953 bps, and its DNA polymerase runs at a speed of 800 bps/sec.
How much time does it take for this enzyme to have replicated E. coli ’s
DNA by 50%?
Anwer: The time it takes equals 4558953 bps× 1

800
sec
bps × 0.5 = 4558953

1600 =

2849 sec = 2849 sec 1
60

sec
minute = 47 minutes.

7.3 Exercise Section 2.7

1. We will consider exponential growth of cells and how this can become
limited by food supply. Note by the way that N(t) does not mean N × t
but N at t!

(a) The meaning of dN(t)
dt is that it equals the “rate of change” of N(t)

as function of time t. When you think about this for a moment you
will probably realise that this equals the slope of a plot of N(t) as

function of t. Since it is the slope you can think of dN(t)
dt as being

equal to N(t+dt)−N(t)
t+dt−t – which is after all the equation for the slope of

the N(t)-vs-t plot. Given that dN(t)
dt = µN(t) (with µ as the growth

rate and positive), what happens to the slope in the N(t)-vs-t plot
when t increases? (Does N(t) increase with time? Why?)
Answer: The slope equals µN(t) and µ > 0 and N(t) > 0 (you cannot
have a negative number of cells), thus dN

dt = µN(t) > 0; the slope
rises, the number of cells increases.
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Figure 7.1: Molecular structures of the 21 amino acids, the molecular
building blocks of proteins.

(b) When a population of cells grows according to dN(t)
dt = µN(t) new

cells are all the time being made by the existing cells. This requires
nutrients. What happens to the nutrient concentration, denoted by
s(t), over time? How would you mathematically describe the slope
of s(t)-vs-t? Would it have to depend on s(t), N(t) or both?
Answer: since each cells has the same nutrient requirement and the
number of cells increases, the nutrient requirement increases too, so
s(t) will drop as function of time (and nutrients are not replenished,

they will run out.) The slope of s(t)-vs-t, i.e. ds(t)
dt therefore depends

on N(t). And on s(t) (!), since s(t) cannot become negative and no
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consumption of nutrients can occurs when s(t) = 0.

(c) What is the problem with the following description ds(t)
dt = −kN(t)

with k as a nutrient consumption rate per cell? Why is it impossible?

Answer: ds(t)
dt = −kN(t) indicates that the concentration of nutri-

ent s(t) always drops. So given a starting amount, this amount
will decrease until it is finished. Then s(t) = 0, but according to
ds(t)
dt = −kN(t) consumption then still continues so that s(t) be-

comes negative, and this is not possible. Thus, ds(t)dt needs to depend
on N(t) and s(t)!

(d) Eventually, when the nutrients run out, the growth of the population
of cells stops. This can be described by the following differential

equation dN(t)
dt = µ

(
1− N(t)

K

)
N(t) with K as the so-called carrying

capacity (or yield) of the environment.

i. What changes in the equation when we double the amount of
nutrients?
Answer: The equation indicates that N(t) becomes constant, i.e.
dN(t)
dt = 0 when N(t) = K. Thus the number of cells that can

be reached equals K and depends on the amount of nutrients
supplied (of course). If twice as many nutrients are applied then
K doubles in value, twice as many cells can be made after all.

ii. How would you characterise the growth when N(t) is small rel-
ative to K?
Answer: then dN(t)

dt ≈ µN(t), the growth is exponential.

iii. What is growth rate of the culture when N(t) = K?

Answer: it is zero since then dN(t)
dt = 0

iv. Sketch the dependency of N(t) on t. (If you want actual numbers
set N(t) = 1, K = 1000 and µ = 1 hr−1.)
Answer: we have just determined that forN(t) << K the growth
is exponential and for N(t) ≈ 0, so we obtain the sketch shown
in Figure 7.2.

v. What has happened when N(t) = K?
Answer: Growth has stopped because the nutrients have been
depleted.

(e) Calculate the generation time of a cell in minutes that grows at a
rate of 1 hr−1.
Answer: In the main text you can find that the generation time, tgen
– the time elapsed from cell birth to division – relates to the growth
rate, µ, as tgen = ln 2

µ ; thus, tgen = ln 2
1 hr−1 = ln 2 hr = 0.67 hr.

2. “Numerically solving a differential equation such as dN(t)
dt = µN(t)” means

that the values of N(t) are calculated at different times given a starting

value of N at time zero, denoted by N(0). From the definition of dN(t)
dt it

becomes clear how this can be done.
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Figure 7.2: Sketch of the dynamics of N(t), so its value as function of

time, for dN(t)
dt = µ

(
1− N(t)

K

)
N(t).

(a) Write down the definition of dN(t)
dt as the slope of a N(t)-vs-t curve.

Answer: The slope at time t equals dN(t)
dt = N(t+dt)−N(t)

dt ≈ N(t+∆t)−N(t)
∆t

(Note that ∆t >> dt). So given a value for t you determine the as-
sociated N(t) value, by using the N(t)− vs− t plot, choose a ∆t > 0
and determine N(t+ ∆) and then you can determine the slope.

(b) Express the value of N at time t+ dt in terms of N at t, dNdt at t and
dt. (We assume that dt has a constant value.)
Answer: We set dt = ∆t, we do this because mathematically dt is de-

fined as infinitesimally small and ∆t as any value. Thus, N(t+∆t)−N(t)
∆t =

µN(t) and therefore N(t+ ∆t)−N(t) = µN(t)∆t and N(t+ ∆t) =

N(t)+µN(t)∆t; or, equivalently N(t+∆t) = N(t)+ N(t+∆t)−N(t)
∆t ∆t

(new value = old value + change). Note that N(t + ∆t) = N(t) +
µN(t)∆t is useful relation, given the number of cells at time t you
can determine the new number of cells at t+ ∆t!

(c) Calculate N(dt) when µ = 1 hr−1, dt = 0.1 and N(0) = 1.
Answer: We set dt = ∆t. Let’s exploit: N(t+∆t) = N(t)+µN(t)∆t.
So, N(∆t) = N(0) + µN(0)∆t = 1 + 1× 1× 0.1 = 1.1.

(d) Calculate N(2dt) given N(dt).
Answer: N(2∆t) = N(∆t) + µ(N(∆t))∆t = 1.1 + 1 × 1.1 × 0.1 =
1.1 + 0.11 = 1.21.

(e) Now use Excel to calculate N(t) as function of time t from 0 to 10. If
you are not familiar with Excel do this with a fellow student or consult
http://bmi.bmt.tue.nl/sysbio/Education/Excel_Euler_simulation.
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pdf.
Answer: See the Excel file ode exponential growth.xlsx.

(f) Check that the resulting curve obeys N(t) = N(0)eµt.
Answer: See the Excel file ode exponential growth.xlsx. The red dots
are the correct answer N(t) = N(0)eµt and the blue dots are the
approximation N(t+∆t) = N(t)+µN(t)∆t. If you make ∆t smaller
the approximation is beter and the red and blue data points are closer
to each other.

(g) Solve also dN(t)
dt = µ

(
1− N(t)

K

)
N(t) numerically, using Excel, when

µ = 1 hr−1, K = 10 and N(0) = 1. Why is this curve and the
previous one you have made the same for small times?
Answer: See the Excel file ode carrying capacity.xlsx. They are the

same when becauseN(t)/K ≈ 0 such that dN(t)
dt = µ

(
1− N(t)

K

)
N(t) ≈

µN(t), the exponential growth regime.

7.4 Exercise Section 2.9

Diffusion lies at the basis of life. Without it, no movement of molecules would
occur and reactions cannot take place. It also limits life, since molecules cannot
move faster than by diffusion. The speed of reactions involving two (or more)
substrates is therefore limited by diffusion rates.

1. Read the abstract of Klumpp et al. [13]. What limits growth rate in E.
coli according to them?
Answer: The key statement is “Here, we show that the slow diffusion of
the bulky tRNA complexes in the crowded cytoplasm imposes a physical
limit on the speed of translation, which ultimately limits the rate of cell
growth.”. Thus, supply of amino acids to the ribosome is limiting the
synthesis of proteins, which are essentially chains of amino acids. Those
amino acids are bound to tRNA, which are large and slowly diffusing, prior
to their transfer to ribosomes which add those amino acids to the growing
amino acid chain. Thus diffusion plays a key role in living processes.

2. The time for two molecules to find each other in a cell volume is given by
equation 2.8. What do you expect happens to this time – the time when
the first collision occurs – when you have N copies of each molecule in-
stead of 1 of each? Why does the time decrease when one of the molecules
is bigger?
Answer: Imagine that you have to find a friend when you are both blind-
folded. You will both be random walking until you bump into each other.
Suppose we N clones of you and of your friend. Now, clearly, you bump
into each other a lot sooner. (In fact the time is shortened by the following
factor 1/N2.) Say now that you have a very fat friend so that the volume
he/she occupies is much greater than of a slim friend. You find the fat
friend sooner because he occupies more space.
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3. Why is the collision time of two molecules (equation 2.8) lower to the
waiting time for them to form a complex?
Answer: In order for two molecules to form a complex in addition to the
collision also chemical processes need to occur like the binding itself, this
also takes time.

4. Calculate how many minutes that it takes for one copy of a transcription
factor with radius 5 nm to find a promoter of a gene. The diffusion
coefficient of the transcription factor is 5 µm2/s. Assume a spherical cell
with a radius of 1.5 µm. Why can you assume that the promoter does not
move?
Answer: The equation is τ = V

4π(DTF+DPROM )(rTF+rPROM ) , let’s substitute

the known parameters in the right units:

τ =
4
3π(1.5 µm)3

4π(5 µm2

s + 0)(5 nm× 10−3 µm
nm + 5 nm× 10−3 µm

nm )
=

14.13 µm3

0.2π µm
3

s

= 22.5 s

= 22.5 s× 1

60

min

s
= 0.38 min

5. How much slower does a molecular complex move than any of its compo-
nents? (With which factor is the diffusion coefficient reduced?)
Answer: The diffusion coefficient of a molecule equals D = kT

6πηa with a as
its radius. Say we have a complex that consists of two of those molecules.
This complex will be larger than the two molecules so its radius ac is larger
than a. The ratio of the diffusion coefficient equals Dc/D = a/ac, so the
Dc = a

ac
D the complex moves slower with the following factor a

ac
.

6. Why is it advantageous for a cell to construct large complexes on DNA,
rather than forming them first in the cytoplasm and after that having
them bind to the DNA?
Answer: One reason might be that those large complexes move very slowly.

7.5 Exercise Section 2.11

1. Consider the following reaction

F + P −⇀↽− FP

with F denoting a transcription factor and P the promoter of a gene.
We will assume that the concentration of the transcription factor greatly
exceeds that of the promoter, which occurs at a single copy per cell. Ac-
cordingly, we assume that the concentration of the unbound, “free” tran-
scription factor is constant. We denote it by fT . The total concentration
of the promoter equals the sum of the concentrations of the free and oc-
cupied promoter, i.e. pT = p + fp. We also assume that pT is constant.
All assumptions made until now are realistic.
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(a) Show that the rate of the association (complex formation) reaction
can be written in terms of only one unknown promoter concentration,
choose fp.
Answer: v+ = k+ × f × p ≈ k+fT (pT − fp)

(b) Show that the rate of the dissociation reaction can written in terms
of only one unknown promoter concentration, choose fp.
Answer: v− = k−fp

(c) Which rate difference equals dfp
dt ?

Answer: dfp
dt = v+−v− = k+fT (pT−fp)−k−fp, note that k+, fT , pT k

−

are all constants (they are the parameters). This dfp
dt only depends

on one variable: fp, the concentration of FP .

(d) Sketch the association rate and the dissociation rate as function of
the concentration of fp. (Make a plot of the two rates as function
of fp, since you do not know the parameter values you have think
carefully about this.)
Answer: See the Figure 7.3.

(e) Can those two rates become equal? What happens then?
Answer: yes they can (and they will always do so). When they do so
v+ = v− and dfp

dt = v+ − v− = 0 such that the concentration of fp
remains constant. This state is called an equilibrium state.

(f) Calculate the concentration of fp when those two rates are equal.
Sketch this concentration as function of fT . Does the outcome make
sense? Is it what you would expect?
Answer: At equilibrium, we denote the concentration of FP by fpe,
and the following relation holds k+fT (pT − fpe) = k−fpe. Solving
for fpe gives k+fT pT − k+fT fpe = k−fpe ⇒ k+fT pT = k+fT fpe +
k−fpe ⇒ k+fT pT = (k+fT + k−)fpe such that

fpe =
k+fT pT

k+fT + k−
= pT

fT

fT + k−

k+

.

Next we need to sketch the dependency of fpe on fT . When fT = 0

then fpe = 0, when fT → ∞ then fpe → pt, when fT = k−

k+ then
fpe → pT /2. Give the dependency we are after is shown in Figure

7.6 Exercise section 2.14

1. Calculate how many proteins fit in E. coli ’s cell membrane assuming that
their radius is 5 nm. Assume a radius of an E. coli cell of 1 µm. How
many proteins fit in its periplasm if this compartment is 15 nm thick?
What is the ratio of the protein numbers in the membrane and periplasm
over the number of proteins in its cytoplasm?
We assume E. coli to be spherical. Then it has as area Acell = 4 × π ×
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Figure 7.3: Sketch of the association and dissociation rate as function
of fp.

Figure 7.4: Sketch of the dependency of the concentration of the
promoter-TF complex on the total concentration of transcription fac-
tor.

r2
cell with rcell as the cell radius. The area of a disk equals Aprotein =
π × r2

protein. So the number of proteins in the membrane of E. coli

equals maximally;
4×π×r2cell m2

cell membrane

π×r2protein m2

protein

= 4×π×(10−6 m)2

π×(5×10−9 m)2
protein

cell membrane =
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160000 protein
cell membrane . Next, we calculate the volume of the periplasm of an

E. coli cell using the equation of the volume of a sphere V = 4
3 × π × r3:

Vperiplasm = 4
3 × π × (10−6m + 15 × 10−9m)3 − 4

3 × π × (10−6m)3 =
1.9 × 10−19m3. The volume of a protein equals Vprotein = 4

3 × π × (5 ×
10−9m)3 = 5.2× 10−25m3. So, maximally 1.9×10−19

5.2×10−25 = 0.4 million protein
fit in the periplasmic space. Which is an appreciable amount of the en-
tire protein content of a cell. All those proteins need to be transported
over the plasma membrane during cell growth! This requires an enormous
transport capacity of a cell especially at maximal growth rates.

2. Find the area of the earth and the distance of the moon to earth on Google.
Calculate the time that it takes for a bacterium to cover the area of planet
earth if the bacterium has an area of 1 µm2 and grows exponentially at a
rate of 1 hr−1. How much time does it takes for this bacterium to fill the
distance between the earth and the moon if it is 1 µm thick if all cells are
stacked on top of each other?
510×106 km2 = 510×106×(1000×m)2 = 5.1×1014m2 is the area of planet

earth. 5.1×1014

1×(10−6m)2 = 5.1× 1026 bacteria fit on the surface of planet earth.

Exponential growth obeys N(t) = N(0)eµ×t; so, we have 5.1 × 1026 = et

and t = ln(5.1 × 1026) = 61.5 hour! Wow, this is fast! The distance to
the earth and the moon is 384 × 103 km = 384 × 106m. The number of
bacteria that can be stacked on top of each other to pass this distance

equals 384×106m
10−6m = 3.8× 1014. This takes ln(3.8× 1014) = 33.6 hours!

3. Stoichiometry of nutrient uptake fluxes during steady-state growth.
The elemental composition of an E. coli cell equals CH1.77O0.49N0.24.
These elements are components of the molecules making up biomass such
as DNA, RNA, lipids and proteins.

(a) Calculate the weight of mol of CH1.77O0.49N0.24.
Answer: Molar weight of CH1.77O0.49N0.24 equals 12+1.77+0.49×
16 + 0.24 × 14 = 25 gram

mol . So 25 grams of cells contains one mol of
C.

(b) A realistic value for the weight of E. coli cell 0.95 pg = 0.95 ×
10−12gram. How many carbon and nitrogen atoms does a single
E. coli cell contain?
Answer: 0.95×10−12 gram

25 gram
mol

= 3.8×10−14mol = 3.8 fmol. (f=femto=10−15.)

So one cell therefore contains 3.8 fmol C and 0.24 × 3.8 fmol =
0.95 fmol N.

(c) How many glucose and ammonium molecules are minimally required
to make a single E. coli cell?
Answer: Glucose is C6H12O6: 3.8× 10−15mol× 6× 1023C−atoms

mol =
22.8 × 108C − atoms = 1

6 × 22.8 × 108 glucose molecules = 3.8 ×
108 glucose molecules. Ammonium is NH4: 0.95× 10−15mol × 6×
1023N−atoms

mol = 5.7×108N−atoms = 5.7×108 ammoniummolecules.
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This is the minimal requirement because more glucose is required to
make energy and sometimes part of the C in glucose is wasted in the
form of fermentation products. Wasting of NH4 does not happen
generally.

(d) When growing on glucose in mineral medium E. coli requires 5.9×109

ATP molecules to synthesise one cell. How many glucose molecules
are required to attain this amount of ATP via respiration? How many
via fermentation?
Answer:

4. The number of proteins made per mRNA. Thinking about transla-
tion is a bit similar to thinking about a conveyor belt that breaks down
quickly. So during the life time of the conveyor belt, during which it carries
boxes from the left to the right, the conveyor belt manages to transport
a number of boxes. Multiple boxes are one the belt, and the distance be-
tween the boxes on the belt is determined by the speed of the belt and the
times between consecutive placements of boxes onto the belt. If boxes are
placed on the belt at a higher rate then boxes are closer to one another
and if the belt runs slower the boxes are also closer to one another. A
box resembles a ribosome and the moving belt corresponds to a ribosome
walking over mRNA. The distance between ribosomes is determined by
the translation initiation rate and the moving rate of ribosomes. The life
time of the mRNA correspond to the operating time of the conveyor belt
before it breaks down and stops working.

(a) Say a ribosome produces peptide chains of a length of 20 amino acids
per second. How many mRNA nucleotides does it pass in a second?
Answer: 20 aa

s × 3 nts
aa = 60 nts

s .

(b) What is the distance in nucleotides between neighbouring ribosomes
on the mRNA if every two seconds a new ribosome hops into the
mRNA?
Answer: 60 nts

s × 2 s = 120 nts.

(c) If every two seconds a ribosome hops on to start translation at steady
state, what is time period between ribosomes leaving the mRNA
transcript?
Answer: again two seconds.

(d) What is then the protein synthesis rate?
Answer: one protein per 2 seconds per mRNA

(e) What is the protein synthesis rate if two such mRNAs occur?
Answer: 2 proteins per 2 seconds

(f) If an mRNA lives 16 seconds how many proteins are made from it?
Answer: 8.

(g) Is the rate set by the elongation rate or the initiation rate in this
exercise?
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Answer: Initiation rate and this is likely the most realistic except for
mRNA that have very fast initiation rates then ribosome collisions
can occur that disappear on the time scale of translation elongation.

7.7 Extra exercise section 2.15

1. Transcription and translation data in human cells.

(a) For the mRNA’s: 17mRNA
cell

1
6×1023

mol
mRNA

1
1800

cell
µm3 = 17

6×1023×1800
mol

(10−610 dm)3 =

16 pmol
l . For the proteins: 50000proteins

cell
1

6×1023
mol

proteins
1

1800
cell
µm3 =

50000
6×1023×1800

mol
(10−610 dm)3 = 46.3 nmol

l

(b) The steady state protein concentration equals,

0 =
d

dt
p = kpt ×ms − kpd × ps (7.1)

with kpt as the translation rate constant, kpd as the degradation rate
constant, and ms and ps as the steady state mRNA and protein
concentration. So,

kpd =
kt ×ms

ps
=

180 proteins
mRNA×hour × 17 mRNA

cell

50000 proteins
cell

= 0.0612
1

hour
(7.2)

So, a protein lives on average 16 hours (= 1
kpd

).

(c) So, the half life equals 9 hour = ln 2
kmd

; such that kmd = 0.08 1
hour . At

steady state, 0 = d
dtm = kmt −kmd ms with the kmt as the transcription

rate (constant) and kmd as the mRNA degradation rate constant; so,

kmt = kmd ms = 0.08 1
hour × 17 transcripts

cell = 1.36 transcripts
hour×cell .

(d) Proteins involved in those cellular functions live long, because they
tend to have the highest concentration in a cell. A high turnover
of those proteins would therefore be very costly. Long life times of
those proteins is therefore an energy saving mechanism. In addition,
cellular effects of metabolic enzymes are typically noticeable only
after the doubling time of a human cell which varies from 17-32 hours;
so having them life much shorter than this time window is not very
productive.

2. Transcription and translation data in E. coli.

(a) This has two interpretations: i. if one cell out of 20 cells has on
average 1 mRNA molecule then 0.05 mRNA molecule occurs per
cell, and ii. if one cell only has 1 mRNA molecule for 5% of the time
(or 2 for 2.5% of the time, etc) then it has on average 0.05 mRNA
molecule.
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(b) We know from the main text that 1 molecule in 1 fl corresponds to
1 nM in E. coli. So for mRNA: 0.05-5 nM and for protein 0.1-5000
nM.

(c) Higher mean concentrations of essential proteins is advantageous be-
cause this reduces the probability that a single cell lacks those pro-
teins and would therefore be unviable.

(d) No, you cannot divide 9 molecules evenly. This example therefore
illustrates that daughter cells, deriving from the same mother, can
have different numbers of molecules. Those 5 identical mothers with
each 10 molecules will not partition the molecules evenly over all
daughters; so, not all daughters will receive 5 molecules each. This
you can easily imagine; equal partitioning will only occur if at the
time of division each cell half has 5 molecules; but molecules move
randomly by diffusion through the cell. So, one cell half could have
6 molecules such that the other half has 4; or 3 and 7 or 2 and 8, etc.
One might expect that a partitioning of 1 and 9 is perhaps less likely
than 4 and 6. How should we describe the statistics of this process?
It is the same as coin flipping stats; say we have 10 coins (molecules)
and role (partition) each of them once to give rise to heads (right
daughter) of tails (left daughter). This is described by a binomial
distribution: the probability pk for a daughter to obtain k molecules

out of 10 equals pk =

(
10
k

)
1
2

k 1
2

10−k
. This distribution is shown

in figure 7.5.

3. Spontaneous genetic variation and competing bacteria. Genetic
variation occurs spontaneously in bacterial populations because of copying
errors are always made during replication. This leads to the spontaneous
generation of mutants in bacterial populations that have slightly differ-
ent properties. Some of those mutants are better adapted to the current
environment, purely by chance. Those mutants will outgrow the resident
population and can overtake the entire population such that their geno-
type becomes the dominant one at the expense of the resident genotype.

We define the mutation probability as,

p = probability for a single base pair change in DNA (7.3)

Let’s apply some elementary probability reasoning to make some inferences
about mutation and selection.

(a) What is expected genome size with a single base pair change?
Answer:

1

p
= N1 = average genome size that has a single base pair change

(7.4)
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(b) What is the expected number of mutations in a genome of length N?
Answer:

nN =
N

N1
= expected number of mutations in a genome of length N

(7.5)

(c) What should be the population size of bacteria with genome length
N that contains all single mutations?
Answer: Number of possible single mutations equals N . The num-
ber of mutations in a genome of length N equals nN . The population
size that is required to contain all single mutations equals therefore
N
nN

= N
N
N1

= N1 = 1
p . Which of course makes sense.

(d) Bionumbers tells us that a E. coli culture at OD600 = 0.1 contains
108 cells

ml . Take as the mutation rate 10−10 mutations
nucleotide×generation (Lee,

..., Foster, PNAS, 2012). What is the expected OD600 of a 1 ml
culture to contain all single mutations?
Answer: The number of cells required for all single mutations equals
1010. So 100 ml is required of OD600 = 0.1 and 10 ml of a OD600 = 1
culture.

Given these numbers, we conclude that during serial-batch evolution ex-
periments should therefore quickly sample all single mutations, as they
involve growth experiments in shake flasks of 100 ml that are grown to
OD600 = 1, diluted by a factor of 10, regrown in a new flask to OD600 = 1,
which repeated for 100s of times.
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Figure 7.5: Probability distribution for the number of molecules in a
daughter cell when the mother contained 10 molecules
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7.8 Answers to exercises of Chapter 3

Exercise section 3.2.3

1. Determine the mass balances and mass action kinetics for the following
molecules and reactions. An underlined molecule indicates that it has a
fixed concentration.

(a) S 
 X 
 P
Answer:

ds

dt
= −v1

dx

dt
= v1 − v2

dp

dt
= v2

v1 = k+
1 s− k−1 x

v2 = k+
2 x− k−2 p

(b) S 
 X 
 P
Answer:

dx

dt
= v1 − v2

dp

dt
= v2

v1 = k+
1 s− k−1 x

v2 = k+
2 x− k−2 p

(c) 3A
 2B + C, B 
 2D , 2C 
 3E
Answer:

da

dt
= −3v1

db

dt
= 2v1 − v2

dc

dt
= v1 − 2v3

dd

dt
= 2v2

de

dt
= 3v3

v1 = k+
1 a

3 − k−1 b2 · c
v2 = k+

2 b− k−2 d2

v3 = k+
3 c

2 − k−3 e3 (7.6)
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(d) XY + Z 
 XY Z, XY Z 
 X + Y Z, Y Z 
 Y + Z
Answer:

dxy

dt
= −v1

dz

dt
= −v1 + v3

dxyz

dt
= v1 − v2

dx

dt
= v2

dyz

dt
= v2 − v3

dy

dt
= v3

v1 = k+
1 xy · z − k−1 xyz

v2 = k+
2 xyz − k−2 x · yz

v3 = k+
3 yz − k−3 y · z (7.7)

Note that Z has functioned as a catalyst and that XY has been split
into X and Y by Z!

2. Determine from these sets of mass balances the reactions,

(a) de
dt = −k+

1 e · s+ k−1 es+ k+
2 es− k−2 e · p, desdt = k+

1 e · s− k−1 es− k+
2 es+

k−2 e · p, dsdt = −k+
1 e · s+ k−1 es,

dp
dt = k+

2 es− k−2 e · p
Answer:
E + S 
 ES, ES 
 E + P

(b) dx
dt = k+

1 a · x2 − k−1 x3 − k+
2 x+ k−2 b

Answer:
A+ 2X 
 3X, X 
 B

(c) dx
dt = k+

1 a− k−1 x+ k3x
2 · y, dydt = k2b− k3x

2 · y
Answer:
A
 X, B → Y , 2X + Y → 3X

(d) dx
dt = v1−v2,

dy
dt = v2−v3,

dz
dt = 4v3−v1−v2−v4 This is fact a simpli-

fied representation of glycolysis with X glucose-6p, Y as fructose1,6-
phophate and Z as ATP. What is should be the substrate of reaction
1 and the product of reaction 3?
Answer:
Glucose and pyruvate.
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Exercise section 3.6.1

Consider the following system,

S
k+1 s−−⇀↽−−
k−1 y

Y
k+2 y−−⇀↽−−
k−2 p

P (7.8)

with the concentration of S and P fixed (hence, the underline).

a. Write down the mass balance for Y and show that y(t) can be found by
analogy with the previous section, by rewriting the mass balance for y.
Answer:

d

dt
y = k+

1 s− k−1 y − k+
2 y + k−2 p = k+

1 s+ k−2 p︸ ︷︷ ︸
k1

− (k−1 + k+
2 )︸ ︷︷ ︸

k2

y (7.9)

So, we can define new ‘lumped’ constants k1 = k+
1 s+k

−
2 p and k2 = k−1 +k+

2

such that the differential equation for y because the same as used in the
previous section in the main text. So, understanding the dynamics is the
same problem for the two systems.

b. Show that generally ys is such that v1 = v2 6= 0, this is called a steady
state, a state of the system when mass flows continuously through the
system.
Answer: The steady state concentration of Y equals,

d

dt
y = 0 ⇒ ys =

k+
1 s+ k−2 p

k−1 + k+
2

(7.10)

When the system is at thermodynamic equilibrium, i.e. when v1 = v2 = 0
then, the concentration of Y equals,

v1 = 0 ⇒ ye
se

=
k+

1

k−1
≡ Keq,1 (7.11)

v2 = 0 ⇒ pe
ye

=
k+

2

k−2
≡ Keq,2 (7.12)

⇒ ye =
k+

1 se

k−1
=
k−2 pe
k+

2

(7.13)

So ys 6= ye, only for a particular choice of the parameters s and p.

c. Does mass always flow in the same direction?
Answer: No, the reactions are reversible; so one would expect if s is chosen
as 0, and held fixed, that mass flows from right to left, and when p is fixed
at 0 that mass flows from left to right. Below this will be rigorously shown.
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d. Only when S and P are chosen in a particular manner do we get the so-
called equilibrium state when v1 = v2 = 0. What is the expression that
relates the equilibrium concentration of y, ye, to the parameters of the
system?

Answer: ye =
k+1 se

k−1
=

k−2 pe

k+2

e. Set the parameters to the following values: k+
1 = 10, k−1 = 1, k+

2 = 8,
and k−2 = 2, determine a concentration combination of S and P when
equilibrium is reached.

Answer: pe
se

= ye
se

pe
ye

= Keq,1Keq,2 =
k+1 k

+
2

k−1 k
−
2

= 40.

f. What happens to the steady-state mass flow when you decrease this P/S
ratio and when you increase P/S?
Answer: Let’s first derive the steady state reaction rates,

v1(ys) = v2(ys) ≡ J (7.14)

J = k+
1 s− k−1

k+
1 s+ k−2 p

k−1 + k+
2

(7.15)

=
k+

1 s(k
−
1 + k+

2 )− k−1 (k+
1 s+ k−2 p)

k−1 + k+
2

(7.16)

=
k+

1 k
−
1 s+ k+

1 k
+
2 s− k+

1 k
−
1 s− k−1 k−2 p

k−1 + k+
2

(7.17)

=
k+

1 k
+
2 s− k−1 k−2 p
k−1 + k+

2

(7.18)

=
k+

1 k
+
2 s

k−1 + k+
2

(
1− k−1 k

−
2 p

k+
1 k

+
2 s

)
(7.19)

=
k+

1 k
+
2 s

k−1 + k+
2

(
1− p

Keq,1Keq,2s

)
(7.20)

(Note that pe
se

= Keq,1Keq,2.) So, if

i. p
s < Keq,1Keq,2 then the flux is positive, a steady state occurs, and
mass flows from S → P .

ii. p
s = Keq,1Keq,2 then the flux is zero and no net mass flow but ther-
modynamic equilibrium.

iii. p
s > Keq,1Keq,2 then the flux is negative, a steady state occurs, and
mass flows from P → S.

g. Try to write the steady-state flux in terms of P/S and the remaining
parameters of the system. Figure 3.2 should be helpful while doing this
exercise.
Answer: See previous equation.
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Exercise section 3.7.1

1. Sketch the dynamics of X as function of time on the basis of the rate
characteristic; take k+

1 = 5, k−1 = 1, k+
2 = 3, k−2 = 2. Show that equation

2.11 indeed causes the system to settle to an equilibrium state where all
reactions rate equal zero. Show that X then has the same stationary
concentration as for the system s 
 x. Show that the time to reach
half the steady-state concentration is halved when all rate constants are
doubled in value.
Answer:
See the Excel file: equilibriumrelaxation.xlsx.

2. Plot the rate characteristic for dx/dt = v1−v2 with v1 = 1/(1+x) and v2 =
x/(1 + x). For which concentration of X does v1 equals v2. Is this state,
a steady state or an equilibrium state? What happens to x as function
of time if the initial concentration of x lies below the concentration of X
where v1 = v2? And what if it lies above this value?
Answer:
The lines will intersect at x = 1 (check by inspection of the equations).
The concentration will increase to reach x = 1 if initially below 1 because
then v1 > v2. In other case, the concentration will reduce until x = 1 is
reached because then v1 < v2.

3. Plot the rate characteristic for dx/dt = v1 − v2 with v1 = 1/(1 + x)
and v2 = V2x/(1 + x) for different values of V2 what happens to the
concentration of x where v1 = v2? Does it increase or decrease? Why?
How would you call the kinetic parameter V2?
Answer:
Clearly at steady state when v1 = v2 we have: 1/(1 + xs) = V2xs/(1 +
xs) ⇒ xs = 1/V2! So a higher V2 reduces the steady state concentration
of X. V2 correspond to the maximal rate that reaction 2 can achieve
(because for very very large values of X: v2 ≈ V2). X inhibits the first
process and lower values of x therefore stimulate the first process, while
lower values of x reduce v2. So an increase in V2 leads to a reduction
of x to enhance the rate of process 1 and slightly reduce the rate of v2

(with the new value of V2) such that they balance. If you find this hard
to understand plot v1 and v2 as function of x in Excel for different values
of V2 and then you will see what I mean.

4. Consider the following reactions A 
 B,B 
 C,C 
 D. All these
reactions follow reversible mass-action kinetics. Express the concentration
ratio of D over A such that the system reaches thermodynamic equilibrium
in terms of the rate constants of the reactions.
Answer:
If the system should reach equilibrium then all the rates should equal zero:
v1 = 0, v2 = 0, and v3 = 0. Thus, b = k+

1 a/k
−
1 and then c = k+

2 b/k
−
2 =

k+
1 k

+
2 a/(k

−
1 k
−
2 ) and d = k+

3 c/k
−
3 = k3

+k
+
2 k

+
1 a/(k

−
1 k
−
2 k
−
3 ). Therefore, if
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the concentration of d/a is chosen as,

d

a
=
k+

1 k
+
2 k

+
3

k−1 k
−
2 k
−
3

(7.21)

All the rates will be zero in the state where the concentration are constant
in time.

5. Do the same for: A
 B,B 
 C,B 
 D
Answer:
If the system should reach equilibrium then all the rates should equal zero:
v1 = 0, v2 = 0, and v3 = 0. Thus, b = k+

1 a/k
−
1 and then c = k+

2 b/k
−
2 =

k+
1 k

+
2 a/(k

−
1 k
−
2 ) and d = k+

3 b/k
−
3 = k+

3 k
+
1 a/(k

−
1 k
−
3 ). Therefore, if the

concentration of d/a is chosen as,

d

a
=
k+

1 k
+
3

k−1 k
−
3

(7.22)

All the rates will be zero in the state where the concentration are constant
in time. The concentration of C is then equal to k+

1 k
+
2 a/(k

−
1 k
−
2 ).

Exercise section 3.9.1

1. Plot ab as function of b. What type of relationship do you find? What is
the ratio of b/KD where 10% and 90% of A is in the complex?
Answer:
You will a hyperbolic relationship with: ab = 1/2aT when b = KD. And
all a is in the complex ab when b >> KD. So 1/KD is a natural measure
for the affinity of A for B and vice versa. 1/KD is the association constant
of the reaction. We can write,

ab = aT
b/KD

1 + b/KD
(7.23)

as
b

KD
=

ab

aT − ab
=

ab/aT
1− ab/aT

(7.24)

If ab/aT = 0.1 (10% of a in complex) then b/KD = 0.11 and for 0.9 we
find b/KD = 9.

2. The KD of a transcription factor for a DNA binding site is 1 nM . What
is the concentration of the transcription factor such that bound fraction
of binding sites is by 10%, 50% and 90%?
Answer:
This is the kind of question as above.

TF

KD
=

TFDNA

TFT − TFDNA
=

TFDNA/TFT
1− TFDNA/TFDNAT

(7.25)
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TF
KD

equals 0.11, 1, and 9 when TFDNA/TFT equals 0.1, 0.5, and 0.9,
respectively. Since, KD = 1 nM the TF concentrations are 0.11, 1, and 9
nM . These are realistic concentrations for a bacterium and this approxi-
mately less than 10 molecules of TF per cell (one molecule/cell for E. coli
is 1 nM)!

3. Consider the following reactions:

A+B 
 AB

A+AB 
 A2B

Define a KD for the first reaction and the second reaction. Do you under-
stand that those can indeed be different?
Answer:
They can for instance be different when the A that binds to AB also in-
teracts with the A already in the complex besides its interaction with B.
Assume again that the total concentration of B is fixed and that A is in
excess. Use the same procedure as explained in the last section to deter-
mine the expression of a2b in terms of b, aT , KD1 and KD2.
Answer:
We have,

bT = b+ 2ab+ a2b = b+ 2
a · b
KD1

+
a · ab
KD2

= b+ 2
a · b
KD1

+
a2 · b

KD1KD2

⇒ b =
bT

1 + 2 a
KD1

+ a2

KD1KD2

(7.26)

Here the 2 comes from the fact that B has two binding sites for A and two
kinds of complexes of AB can exist and each needs to be counted. Since,
a2b = a2 · b/(KD1KD2) we get,

a2b = bT

a2

KD1KD2

1 + 2 a
KD1

+ a2

KD1KD2

(7.27)

And if A also interacts with A in AB besides its interaction with B then

a2b = bT

a2

αKD1KD2

1 + 2 a
KD1

+ a2

αKD1KD2

(7.28)

4. The same as the previous question but now for:

A+B 
 AB

A+AB 
 A2B

A+A2B 
 A3B (7.29)

Answer:
The total amount of b equals bT = b + 3ab + 3a2b + a3b. The ”3” derive
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from the fact that B has three binding states for A and three forms of
AB and A2B can then exist: i.e. if we mark the occupied sites of B with
a ”+” and an empty one with a ”=” you can have {+==, =+=, ==+}
and {++=, +=+, =++}. This means that we can write (following the
logic of the last exercise),

b =
bT

1 + 3 a
KD1

+ 3 a2

αKD1KD2
+ a3

αβKD1KD2KD3

(7.30)

And we obtain

ab = bT
3 a
KD1

1 + 3 a
KD1

+ 3 a2

αKD1KD2
+ a3

αβKD1KD2KD3

(7.31)

a2b = bT
3 a2

αKD1KD2

1 + 3 a
KD1

+ 3 a2

αKD1KD2
+ a3

αβKD1KD2KD3

(7.32)

a3b = bT

a3

αβKD1KD2KD3

1 + 3 a
KD1

+ 3 a2

αKD1KD2
+ a3

αβKD1KD2KD3

(7.33)

(a) At what concentration of A is 50% of B in the A3B complex?
Answer:
This requires solving

a3b

bT
=

a3

αβKD1KD2KD3

1 + 3 a
KD1

+ 3 a2

αKD1KD2
+ a3

αβKD1KD2KD3

= 0.5 (7.34)

for a. This is a nightmare of course and we would let Mathematica
do this for us.

(b) At what concentration of A is 50% of B in the A2B complex? This
requires solving

a2b

bT
=

a2

αKD1KD2

1 + 3 a
KD1

+ 3 a2

αKD1KD2
+ a3

αβKD1KD2KD3

= 0.5 (7.35)

for a; let call this value a∗. This is a nightmare of course and we
would let Mathematica do this for us.

(c) What is then the fraction of B in the AB and the A3B complex?

ab

bT
=

3 a∗

KD1

1 + 3 a∗

KD1
+ 3 a∗2

αKD1KD2
+ a∗3

αβKD1KD2KD3

(7.36)

a3b

bT
=

a∗3

αβKD1KD2KD3

1 + 3 a∗

KD1
+ 3 a∗2

αKD1KD2
+ a∗3

αβKD1KD2KD3

(7.37)
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Exercise section 3.9.2

1. Steady state versus equilibrium state Many biological systems attain
steady states. The principles of steady states are therefore very important
and you will study them in this exercise. Consider the following reactions
and assume them to follow mass action kinetics

S
1−⇀↽− X (7.38)

X
2−⇀↽− P (7.39)

We will focus on X. The rate of reactions 1 and 2 are denoted respec-
tively by v1 and v2. Here we use the convention that the concentration
of molecules are written in small font and the name of the molecule in
capitol font.

(a) Give the mass balance for the concentration of X.
Answer: dx

dt = v1 − v2

(b) When has X attained a steady state?
Answer: When v1 = v2 6= 0.

(c) Can this happen when the concentrations of S and P are not fixed?
Answer: No, since the rates of the reactions are depend on the
concentration of S and P , which will change when they are not held
fixed, such that the rates becomes time dependent until ds

dt ,
dx
dt and

dp
dt become zero. When this happens v1 = v2 = 0 because ds

dt = −v1

and dp
dt = v2, and this is not a steady state.

(d) What is the name of the state that the system attains when S and
P are not fixed?
Answer: Thermodynamic equilibrium.

(e) Calculate the concentration of X in the final state when S and P are
not fixed, assuming reversible mass-action kinetics.
Answer: In the final state v1 = v2 = 0 and v1 = k+

1 s − k−1 x and
v2 = k+

2 x−k−2 p. To solve for x we have to solve the following system
of equations,

k+
1 se − k−1 xe = 0

k+
2 xe − k−2 pe = 0

T = se + xe + pe (7.40)

The last condition states that the total concentration of molecules
remains fixed, the subscript indicates that we are considering the
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equilibrium concentrations. Solving this gives,

se =
k−1 k

−
2

k−1 k
−
2 + k+

1 k
−
2 + k+

1 k
+
2

T

xe =
k+

1 k
−
2

k−1 k
−
2 + k+

1 k
−
2 + k+

1 k
+
2

T

pe =
k+

1 k
+
2

k−1 k
−
2 + k+

1 k
−
2 + k+

1 k
+
2

T. (7.41)

(f) When S and P are not fixed, the concentration X can only become
constant if the rates of reactions 1 and 2 are each equal to zero. Derive
the two equations that relate the concentration ratio of xs of px in this
equilibrium state. Define those ratio’s as equilibrium constants K1

and K2

Answer: v1 = 0 ⇒ x
s =

k+1
k−1

= K1 and v2 = 0 ⇒ p
x =

k+2
k−2

= K2.

(g) Rewrite the rate of reaction 1 and 2 in terms of the constant K1 and
K2 and show that the rates are negative when x

s > K1 and p
x < K2

and positive when x
s < K1 and p

x < K2. What happens if a reaction
rate changes sign?
Answer:

v1 = k+
1 s− k−1 x = k+

1 s

(
1− x

s×K1

)
v2 = k+

2 x− k−2 p = k+
2 x

(
1− p

x×K2

)
(7.42)

Clearly these equations agree with the greater and smaller condi-
tions. If a reaction rate changes change then the current product
becomes the substrate and the current substrate becomes product,
so the reaction start to work in the opposite direction.

(h) Fix S and P and solve the differential equation with x(0) = x0 as
initial state.
Answer: The following differential equation needs to be solved,

dx

dt
= k+

1 s+ k−2 p︸ ︷︷ ︸
a

− (k−1 + k+
2 )︸ ︷︷ ︸

b

x, x(0) = x0 (7.43)

which leads to x(t) = x(0)e−bt + a
b

(
1− e−bt

)
with a

b =
k+1 s+k

−
2 p

k−1 +k+2
as

the steady state concentration of x.

(i) What is the concentration of X when time become very large?
Answer: It becomes equal the steady state concentration defined by
k+1 s+k

−
2 p

k−1 +k+2
.
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(j) Are the rates of the reactions necessarily unequal to zero in the final
state or does it depend on the choice of the value of the fixed con-
centrations of S and P?
Answer: It depends on the choice of the concentrations of S and
P . If those are chosen as the equilibrium concentration (question e)
then the final state will be an equilibrium state.

(k) Express the concentration of X in the final state in terms of the
system parameters.

Answer: xs =
k+1 s+k

−
2 p

k−1 +k+2
.

(l) Show that at the steady state, when S and P are fixed and the rate
of X synthesis and degradation are equal, that the direction of mass
flow – so from S to P or vice versa – depends on the ratio of p

s .
Answer: At the steady state, v1 = v2 = J with J therefore as J =

k+
1 s−k−1 xs = k+

1 s−k−1
k+1 s+k

−
2 p

k−1 +k+2
=

k+1 k
+
2 s−k−1 k−2 p
k−1 +k+2

=
k+1 k

+
2

k−1 +k+2
s
(

1− k−1 k
−
2 p

k+1 k
+
2 s

)
=

k+1 k
+
2

k−1 +k+2
s
(

1− p
sK1K2

)
. This indicates that the flux is positive, when

P is made out of S, when p
s < K1K2 and if p

s > K1K2 it is negative
such that S is made out of P .

Exercise section 3.10

1. Enzyme kinetics. Enzymes are the workhorses of a cell. Essentially
all reactions are catalysed by them. They speed up reactions by offering
a favourable physicochemical environment in their catalytic site for the
reaction to occur. Without the enzyme the reaction would also take place,
as enzymes cannot change the equilibrium constant of a reaction, but the
reaction rate would be orders of magnitude slower. So one way to envision
cellular metabolism is that a cell selects reactions that are favourable for
its fitness, by expressing the associated enzymes that can catalyse those
reactions, out of all possible reactions. In this exercise, we will think
about the principles of enzyme catalyses. Consider the following enzyme-
catalysed conversion,

S + E
v+1−−⇀↽−−
v−1

ES
v2−→ E + P (7.44)

The underlines indicate that the concentrations of S and P are held fixed.

(a) Give the mass balances for the concentrations of the variable species
in the model in terms of rates of the reactions.
Answer:

de

dt
= −v+

1 + v−1 + v2 (7.45)

des

dt
= v+

1 − v−1 − v2 (7.46)
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(b) An enzyme is a catalyst that is not spent during the reaction. This
has one particular consequence for the concentration of enzyme in
the system. What is this consequence?
Answer: The total enzyme concentration remains fixed, eT = e+es.

(c) Why is de
dt + des

dt = 0?
Answer: Because the total enzyme concentration remains fixed. 0 =
deT
dt = d(e+es)

dt = de
dt + des

dt .

(d) Express the rate of the reactions in terms of mass action kinetics.
Answer:

de

dt
= −v+

1 + v−1 + v2 = −k+
1 · e · s+ k−1 es+ k2es (7.47)

des

dt
= v+

1 − v−1 − v2 = k+
1 · e · s− k−1 es− k2es (7.48)

(e) Give the units of all the terms appearing in the mass balance equation
with mass action kinetics.
Answer: k+

1 has as unit 1
time×concentration and k−1 and k2 have each

as unit 1
time .

(f) Solve for es at steady state.
Answer:

0 =
des

dt
= k+

1 · (eT − es) · s− k−1 es− k2es = k+
1 eT s+ (−k2 − k+

1 s− k−1 )es(7.49)

⇒ es =
k+

1 eT s

k2 + k−1 + k+
1 s

(7.50)

(g) The steady-state rate of the enzyme is defined as v = k2es. Ex-
press this enzyme rate in terms of s and identify the combination of
constants that you have to make in order to write this enzyme rate
equation into its more familiar form,

v = Vmax
s

KM + s
(7.51)

Answer:

v = k2es = k2eT
k+

1 s

k2 + k−1 + k+
1 s

= k2eT︸︷︷︸
Vmax

s

k2 + k−1
k+

1︸ ︷︷ ︸
KM

+s

= Vmax
s

KM + s
(7.52)

(h) Studying 1
v leads to an intuitive understanding of how an enzyme

works (we set eT to 1),

1

v
=

k2

k2k
+
1 s

+
k−1

k2k
+
1 s

+
k+

1 s

k2k
+
1 s

=
1

k+
1 s

(
1 +

k−1
k2

)
+

1

k2
(7.53)
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1
v now corresponds to the waiting time for 1 enzyme to convert one

molecule of S into P . If k2 >> k−1 then ES → E + P nearly always
occurs, rather than ES → E+S, and the waiting time for the reaction
becomes,

1

v
=

1

k+
1 s︸︷︷︸

time to
bind

+
1

k2︸︷︷︸
catalysis

time

(7.54)

Which makes intuitive sense, both reactions have to occur before a

P molecule appears. Why does the
(

1 +
k−1
k2

)
factor appear when k2

is not much larger than k−1 ?

Answer: The factor
(

1 +
k−1
k2

)
equals the number of re-bindings of S

to E before the catalysis reaction ES → E + P occurs. The binding
time 1

k+1 s
therefore need to be multiplied by this factor to get the

waiting time for the ES → E+P to occur which takes itself 1
k2

time
to complete.

2. The chemostat for culturing of cells. The chemostat is a bioreactor
set up that allows for the continuous steady-state cultivation of cells, it
keeps the cells at a steady-state growth rate. The chemostat state is
sometimes called a continuous culture. The concept is that medium flows
into the reactor from a medium vessel at a fixed flow rate F , expressed in
liter
hr . The volume of the culture V is kept fixed by flowing out medium,

including cells, from the bioreactor into an exhaust vessel at the same
rate. The dilution rate D is now defined as D = F

V . Medium leaves
and enters the vessel at this rate. You can therefore think of D as a
rate constant. The medium vessel contains the growth substrate, which
limits growth, e.g. glucose, at a concentration sm. Since the cells in the
bioreactor consume this substrate the concentration in the bioreactor, s
will be smaller than the concentration in the medium vessel: s < sm. The
cells have a specific growth rate µ that depends on the concentration of
the growth-limiting substrate in the reactor. We model it as,

µ = µmax
s

Ks + s
(7.55)

with 1/Ks as the affinity of the organism for the growth-limiting sub-
strate. This equation is often called the Monod equation with µmax as
the maximal growth rate and Ks as the Monod constant. A model of
the chemostat contains minimally two variables: the concentration of sub-
strate (in mol/l) and cells (in gram/liter) in the bioreactor. For those
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variables we can write the following mass balances,

ds

dt
= D(sm − s)−

1

Yx/s
µx (7.56)

dx

dt
= (µ−D)x (7.57)

with Yx/s as the yield of biomass on substrate in gram biomass
mol substrate .

(a) Explain the meaning of all the terms in the balances: Dsm, −Ds, −
1
Yxs

µx, µx and of −Dx.
Answer:

Dsm = Inflow rate of substrate from the medium vessel into the bioreactor in
M

hr

−Ds = Outflow rate of substrate from bioreactor into the exhaust vessel in
M

hr

− 1

Yx/s
µx = Substrate consumption rate in

M

hr

µx = Growth rate of the culture in
gram

liter × hr
−Dx = Outflow rate of cells out of the bioreactior in

gram

liter × hr

(b) At steady state the specific growth rate µ equals the dilution rate D.
Why does this make sense?
Answer: Since cells do not enter the bioreactor, only growth can
compensate for cell loss by outflow. Only if the growth rate equals
the outflow rate will the concentration of cells remain fixed, which is
the requirement for steady state.

(c) Express the steady state concentration of biomass xs and of growth
substratess in terms of model parameters and plot their dependences
on the dilution rate.
Answer:

D = µ = µmax
ss

Ks + ss
Valid at steady state (7.58)

⇒ ss =
Ks

µmax −D
(7.59)

0 = D(sm − ss)−
1

Yx/s
Dxs (7.60)

⇒ xs = Yx/s(sm − ss) = Yx/s(sm −
Ks

µmax −D
) (7.61)

(d) What is the maximal possible value of D at which cells still occur in
the chemostat?
Answer: D = µmax
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(e) What is concentration of growth-limiting substrate in the bioreactor
when the maximal D is reached?
Answer: sm ≈ ss.
Add experimental figure of ss and xs as function of D.

3. Persister cells in bacterial populations In the last few years, it has
become clear that populations of many bacterial species consist of two
subpopulations. One that is growing and another that is non-growing –
‘dormant’. The non-growing cells are more stress resistant than the grow-
ing cells. Antibiotic resistant bacteria are often dormant cells and since
they persist antibiotic conditions, or stress conditions, they are generally
referred to as ‘persister cells’. A single growing cell can switch to become
persister and a persister can switch to become a growing cell. Clearly, the
persister cells do not grow. We therefore have the following three pro-
cesses: i. growth of a cell in the growing state, ii. a cell in the growing
states that switches to the persister state, and iii. a persister state cell
that turns into a growing cell state. We use the following notation: µ =
growth rate, kp = the rate constant for switching from the growing to the
persister state, kg = the rate constant for switching from the persister
state to the growing state, the concentration of growing and persister cells
equals g and p, respectively.

(a) What are the mass balances for the concentrations of growing and
persister cells?
Answer:

d

dt
g = µg − kpg + kgp (7.62)

d

dt
p = kpg − kgp (7.63)

(b) Why does this system never settle to a steady-state concentration of
the cell states?
Answer: Because the growing cells continue to grow and do not
settle to a steady state at which cell death or cell loss balances with
cell growth.

(c) Do you think the fraction of persister and growing cells becomes fixed
over time?
Answer: Yes, I expect this to happen. Why will become clear in
the next questions.

(d) The balance for the fraction of persister cells, φ, is given by,

dφ

dt
=

d

dt

(
p(t)

g(t) + p(t)

)
︸ ︷︷ ︸

φ

= kp + µφ2︸ ︷︷ ︸
Synthesis rate

− (kp + kg + µ)φ︸ ︷︷ ︸
Degradation rate

(7.64)
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The steady state fraction equals,

φs =
kd + kg + µ−

√
(−kd − kg − µ)2 − 4kdµ

2µ
(7.65)

This fraction was obtained by setting the previous equation to zero
and solving for φ. Derive this equation yourself.
Answer:

dφ

dt
= 0 = µ︸︷︷︸

a

φ2
s −(kp + kg + µ)︸ ︷︷ ︸

b

φs + kp︸︷︷︸
c

(7.66)

φs,1,2 =
−b±

√
b2 − 4ac

2a
(7.67)

Only one of those two solutions, the with the ‘-’ in front of the square
root, gives φ value between 0 and 1.

(e) Calculate the steady state fraction. Use realistic parameters: µ =
1 hr−1, kg = 1

10 hr
−1, and kd = 1

100 hr
−1.

Answer: This fraction equals 0.9%.

(f) Show that the persister fraction indeed moves towards a stable steady
state by plotting the synthesis rate and degradation rate as function
of φ. Use the same parameters as in the previous question.
Answer: You indeed find one intersection of the synthesis and degra-
dation rate curves at φs = 0.009. Left from this steady state point the
synthesis exceeds the degradation rate, so φ increases to φs. Right
from this steady state point the degradation rate exceeds the synthe-
sis rate, so φ drops to φs.

7.9 Answers to exercises of Chapter 4

7.10 Answer for exercise section 4.2

1. In signal transduction, proteins are often activated by phosphorylation,
this causes them to change shape and have different binding affinities and
enzymatic activities. They are then inactivated by dephosphorylation.
Kinase phosphorylate proteins and phosphatase dephosphorylate them.

(a) What is the reaction catalysed by a kinase?

Answer: X +ATP
kinase−−−−→ XP +ADP with X as the target protein

that modified by the kinase and phosphatase. This reaction occurs
at rate vkinase

(b) What is the reaction catalysed by a phosphatase?

Answer: XP
phosphatase−−−−−−−−→ X +P with as inorganic phosphate, PO3−

4

and occurring at rate vphosphatase.
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(c) If we keep the concentrations of ATP, ADP, Pi, kinase and phos-
phatase constant which differential equations would you need to model
the activation of protein by a kinase and its inactivation by a phos-
phatase?
Answer: then we would end up with the following differential equa-
tions:

dx

dt
= vphosphatase − vkinase

dxp

dt
= vkinase − vphosphatase (7.68)

Note that dx
dt + dxp

dt = 0, which means that total concentration of X,
so x+ xp stays constant!

(d) What would be suitable enzyme kinetics for the kinase and the phos-
phatase?
Answer: many options exist – which you may know when you are
familiar with enzyme kinetics of multiple substrate and product re-
actions – but the simplest ones would incorporate the concentrations
of molecules that are held fixed into enzyme parameters and then one
would, for instance, obtain,

vkinase = Vk
x

Kk + x
and vphosphatase = Vp

xp

Kp + xp
.

See, for instance, the reference Goldbeter & Koshland [14].

(e) Explain why one differential equation is sufficient for the dynamic
description of this process.
Answer: Since x + xp is constant, say equal to xtot, such as that
x = xtot − xp then

vkinase = Vk
xtot − xp

Kk + xtot − xp
and vphosphatase = Vp

xp

Kp + xp
,

such that both rates only depend on one variable, the concentration
of XP . Therefore, we only need one differential equation,

dxp

dt
= vkinase − vphosphatase = Vk

xtot − xp
Kk + xtot − xp

− Vp
xp

Kp + xp
.

(f) Do you think that this system reaches a steady state or an equilibrium
state?
Answer: The rates of phosphatase and kinase are assumed irreversible
(these cannot become negative after all) and therefore they cannot
equal 0 when for nonzero concentrations of their reactants. So an
equilibrium state where both vkinase = 0 and vphosphatase = 0 is
impossible. Thus only a steady state is possible.
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(g) Is this state stable? What if is not?
Answer: At the steady state, the concentration of XP is such that
vkinase = vphosphatase 6= 0, lets call this concentration, xps. The
steady state with concentration xp is stable: i. if for xp < xps,
dxp
dt > 0 such that the concentration of xp rises with time as long as

xp < xps and ii. if for xp > xps,
dxp
dt < 0 such that the concentration

of xp decreases with time as long as if xp > xps. Otherwise it is
not and the concentration of xp moves away from xps. When you
sketch vkinase and vphophatase as function of xp you can deduce that
the steady state is stable.

7.11 Answers for exercise section 4.6

1. Dimerisation kinetics of a membrane receptor.

(a) Since every dimer is composed out of two monomers and a monomer
equals one receptor protein, the total number of receptor proteins
equals the number of dimers times 2 plus the number of monomers.

(b) The mass balance for the dimers equals d
dtm2 = va−vd. We have the

following relation mT = 2×m2 +m and therefore 0 = 2 d
dtm2 + d

dtm

such that d
dtm2 = − 1

2
d
dtm.

(c) Apparently the life time of the dimer is quite short; so, their interac-
tion is rather weak such that it quickly falls apart.

2. Kinase and phosphatase kinetics and the steepness of the in-
put/output relationship of a kinase-phosphatase pair. Play with
the file ”kinase and phosphatase.cdf”.

7.12 Answers for exercise section 4.7

1. How negative feedback in a signaling cascade causes insensitivity
to cancer drugs.

(a) See figure 7.6 for a visualisation of the MAPK network. Note that
the paths in the network scheme from EGFR to ERK and the circular
path from ERK to ERK appear in the scheme as well as in the
response equation.

(b) The response equation without the feedback corresponds to the strength
of the path from EGFR to ERK; so, d lnERK = rERKMEK × rMEK

RAF ×
rRAFEGFR × d lnEGFR. Since the feedback is negative the influence of
the feedback is that it reduces the response of ERK with respect to
a change in EGFR. In terms of y and u, we obtain in absence of the
feedback: y = A× u
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(c) If the feedback is strong, the response of ERK (y) becomes indepen-
dent of the cascade response rERKMEK × rMEK

RAF × rRAFEGFR (A) because
then f × A � 1 and y ≈ 1

f × u. So, the feedback makes the system
in sensitive to changes in A; hence, drugs intervening with processes
between RAF and ERK have no longer an effect on the response of
ERK with respect to EGFR.

(d) No, the feedback does not protect the system against drugs interven-
ing above RAF, so to those affecting u, because the response equa-
tion still depends on u when the feedback is strong; because then
y = 1

f × u.

(e) The thermostat works properly when y (room temperature distur-
bances) is zero for most values of u (outside temperature distur-
bances). So, when u ≈ f × y then y ≈ 0; see equation y = A ×
(u − f × y). Now note that when u ≈ f × y, y ≈ 1

f × u. So, this is
exactly the equation that holds when f is large such that f ×A� 1!
Hence, robustness occurs when the feedback is strong; as it dampens
the effect of an outside disturbance u by a factor 1

f . So, feedback
causes robustness and then the thermostat works.

Figure 7.6: Depiction of the MAPK interaction network with and with-
out the feedback of ERK onto RAF.

2. Bacteria communicating with each other and deciding together.
Bacteria are much smarter than we often think. For instance, they use a
mechanism called quorum sensing to keep track of the number of bacteria
in the population. In this way, bacteria can ‘measure’ their population
size and initiate a response when this number passes a threshold. Some
bacteria even use this mechanism to measure the abundance of competing
or harmful bacteria. The principle of quorum sensing is shown in figure
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4.7. (We note that not all bacteria use sensors to measure quorum-sensing
compounds, you can also think of the sensor as a transcription factor
inside the bacterium, and the green compound as freely diffusing over
membranes.)

Say that the production rate of green compound per cell equals, kp, in
nM

minute×cell , that we have N cells, and that the diffusion rate equals kd in
1

minute .

(a) Write down the mass balance of the extracellular concentration of the
green compound, denoted by g, and express this equation in terms
of kp, N , and kd.
Answer: d

dtg = kp ×N − kd × g
(b) Express the steady state concentration of g, called gs, in terms of kp,

N , and kd.
Answer: gs =

kp
kd
×N

(c) Suppose that the bacteria grow exponentially, such that their number
increases as N(t) = N(0)× eµ×t, with µ as the growth rate and t as
time. We also know that when gs exceeds the threshold concentration
g∗ that the cells respond with gene expression. Express the time at
which the cells initiate a response in terms of kp, kd, N(0), and µ.
Assume that at every moment in time g ≈ gs.
Answer:

g∗ =
kp
kd
×N(0)eµ×t

∗ ⇒

eµ×t
∗

=
g∗ × kd
kp ×N(0)

⇒

t∗ =
1

µ
× ln

(
g∗ × kd
kp ×N(0)

)
(7.69)

(d) Calculate the time that it takes before the threshold concentration is
reached when we start with 1 cell, kp = 5 nM

minute×cell , kd = 100 1
minute ,

µ = 1 hour−1 and g∗ = 100 nM.
Answer:

t∗ =
1

µ
× ln

(
g∗ × kd
kp ×N(0)

)
=

1

1
× ln

(
100× 100

5× 1

)
= 6.9 hour(7.70)

(e) What is the threshold number of cells?
Answer: N∗ = N(t∗) = 1× e1×6.9 = 2000 cells

3. Does a cell need to be covered completely with sensors for max-
imal sensing or witg transporters for a maximal uptake rate of
nutrients? We consider a cell with radius a that has N transporters
or sensors on its surface, each with radius s. The transporters transport
nutrient molecules that find the cell by diffusion whereas the sensors bind
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molecules and initiate signaling. The nutrient or signal concentration far
away from the cell is c∞. The nutrients and signals diffuse with a diffusion
coefficient D. The relation between the uptake flux, J , (or sensor binding
rate) and those parameters is (Berg & Purcell, Biophysical Journal, 1977),

J = 4πDc∞a︸ ︷︷ ︸
Jmax

Ns

Ns+ aπ
⇒ J

Jmax
=

Ns

Ns+ aπ
(7.71)

with Jmax as the maximal uptake rate. N can be considered as the only
variable in this equation. Consider a transporter of 5 nm and the cell of
1 µm in radius. Those are realistic numbers for bacteria.

(a) How many receptor are required for half maximal uptake?

Answer: 1/2 = N×5×10−9

N×5×10−9+10−6π which leads to a requirement of
628 transporters.

(b) Consider the transporters as disks and the cell as a sphere. What is
percentage of area covered by transporters for half-maximal uptake?
Write down your expectation first.
Answer: Area cell: Ac = 4πa2 and of the receptor Ar = πs2.

Percentage area covered 628×π(5×10−9)2

4π(10−6)2 × 100% = 0.4% Wow! This

is very small! Very far from the expected 50%.

(c) Plot the J
Jmax

as function of the cell-surface area that is occupied by
transporters.
Answer: Fraction of covered cell-surface area with receptors: φ =

Nπs2

4πa2 = Ns2

4a2 ⇒ N = 4φa2

s2 ; such that J
Jmax

= Ns
Ns+aπ =

4φa2

s2
s

4φa2

s2
s+aπ

=

4aφ
4aφ+πs = φ

φ+πs
4a
≈ φ

φ+ s
a

. With s = 5 × 10−9m and a = 10−6, 96%

of maximal uptake is reached when 10% of the cell surface is cov-
ered with transporter. The explanation is that diffusion resembles
a random walk and a molecule that collides with the cell will do so
many times, effectively ‘scanning’ the surface for transporters. The
uptake ‘zone’ of a transporter is therefore much great than its own
dimensions.

These were very surprising results and also exact results, no approxima-
tions were made in the derivation of the equations mentioned above that
are not biologically realistic.

7.13 Answers to exercises of Chapter 5

1. Induction and repression of gene activity.

(a) See figure 7.7 for a plot of the experimental data.
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Figure 7.7: Fitting induction and repression models to experimental
data on single-cell transcripts numbers. Left: Repression data fitted to
x(t) = x(0) × e−kd×t which gives as best fit values x(0) = 19.1 transcripts

cell and
kd = 0.06 1

min . Right: Induction data fitted to x(t) = xs(1 − e−kd×t) with

xs = ks
kd

given rise to ks = 1.32 transcripts
min . Clearly, the hypothesis underlying

the induction model are insufficient for a satisfactory explanation of the experi-
mental data. The induction model should incorporate an transduction induction
delay and an overshoot.

(b) Since the transcription being induced causes the production of a
metabolic enzyme, it is likely that the transcription activity is inhib-
ited when sufficient metabolic enzyme has been synthesised. How-
ever, at the time of transcription inhibition new protein is still being
made of the existing mRNA and RNA polymerases are still on the
transcribing gene; so, the effect of the inhibition on transcript levels
is delayed.

(c) The fitted value of the kd equals 0.06 1
min . The life time of the mRNA

equals 1
kd

= 16 min. So, the induction delay discussed previously is
expected to be roughly 16 min, which is indeed fairly reasonable given
the data.

It is hard to decide from the data, but a small repression delay could
be visible from the data; the fit of the exponential curve to the data
is also better when the first data point is removed. The fit is also
slight improved when a background level of mRNA is assumed; so,
x(t) = xb + x0e

−kd×t.

(d) The transcription rate constant ks has as unit transcript concentration
min

(note that if the volume of the cell remains fixed, the transcription
rate constant can also be expressed in transcript

min ). The assumed model
is insufficient for explaining the data; a model that incorporates a
transcription delay and also for an overshoot would fit the data much
better.

2. Dynamics of feedforward loop gene networks.
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Figure 7.8: Dynamics of FFL systems with either an activating or in-
hibiting feedforward loop Left: An inhibiting FFL system gives rise to a
peaked activation of TF3 Right: An activating FFL system gives rise to a de-
lated activation of TF3. The dotted lines indicate the response times of the
different TF ’s.

• The FFL system with the inhibiting influence of TF2 on the syn-
thesis of TF3 shows the peaked activation of TF3; because the TF1-
activation of TF3 synthesis is immediate, it acts sooner than the
inhibition of TF3-synthesis by TF2, which is delayed as it depends
first on the increase in the concentration of TF1 and only then TF2

can increase. So, TF2 and TF3 rise together due to the rise in TF1

and when TF2 is high enough it reduces TF3.

• The FFL system with the activating influence of TF2 on the synthesis
of TF3 shows the delayed activation of TF3; TF3 only rises when TF1

and TF2 are both high, because the synthesis of TF3 depends on the
product of their concentrations.

3. The lac operon of Escherichia coli. The lac operon is active when
glucose is low and lactose is high. Therefore, in the presence of glucose
and lactose, the consumption of lactose starts when glucose has been con-
sumed. So, E. coli prefers glucose over lactose.

4. Transcription factor binding to DNA Transcription factors bind to
DNA to influence the rate of mRNA synthesis. We consider the following
reaction,

F +D
association−−−−−−−⇀↽−−−−−−−
dissociation

DF, (7.72)
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with F as the transcription factor and D as the DNA binding site. Con-
centrations are in small font and names of molecules in capitol font.

(a) Why are the total concentrations of F , which is equal to fT = f+df ,
with subscript ’T’ for total, and of D, equal to dT = d+df , constant
when the binding reaction occurs in a test tube?
Answer: Since no new molecules are added and removed from the
test tube, those total concentrations remain fixed.

(b) If this reaction can be described in terms of mass action kinetics then
what would be the rate equation for this reaction and what be the
units of all the terms occurring in it?
Answer: The rate equation would be v = ka · f · d− kd · df with ka
as the association rate constant, with unit 1

concentration·time and the
kd as the dissociation rate constant with unit 1

time .

(c) Consider the situation where we keep the concentration of the tran-
scription factor fixed. Give the mass balances for d and df .
Answer:

d

dt
d = −v

d

dt
df = v

v = ka · fT · d− kd · df (7.73)

Since dT = d+ df we can eliminate one of those mass balances and,
for instance, focus only on,

d

dt
df = ka · fT · (dT − df)− kd · df (7.74)

(d) Explain why the following relation holds: d
dtd = − d

dtdf .
Answer: Since the sum d+df remains fixed, any change in d is also
accompanied by an opposing change in df .

(e) Show that at thermodynamic equilibrium the following relation holds,

df = dT
f

kd
ka

+ f
(7.75)

Answer: At thermodynamic equilibrium: v = ka · fT · (dT − df) −
kd · df=0, solving for df gives the required equation.

(f) The ratio kd
ka

is called the dissociation constant and often written as
KD. What is its unit?
Answer: Its unit is concentration since ka is in 1

concentration×time and

kd in 1
time .

(g) What is the unit of f
KD+f ?

Answer: It is dimensionless, all its terms have concentration as unit.
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(h) Say the volume of a bacterial cell is 1 fl and 15 molecules of f occur
in this cell. What is the concentration of f in nM?
Answer: 15 molecules

10−15l
1

6×1023
mol

molecules = 15 mol
6×108 l = 25 nM .

(i) If one DNA site exists in this bacterial cell then what would be its
concentration in nM .
Answer: 0.25/15 nM = 1.67 nM

(j) Plot the occupancy fraction of the DNA binding site, defined as df
dT

,

as function of f . Set KD=2 nM. When is df = dT
2 ?

Answer: This is a hyperbolic curve that ranges on the y-axis from
0 to 10 and equals 1/2 when df = dT

2 .

(k) If f is maximally 15 nM then what is the maximal occupancy frac-
tion?
Answer: 15

2+15 = 0.88.

(l) If the transcription rate equals v = ktdf and kt equals 5 nM mRNA
nM DNA site×min

then what is the rate of mRNA synthesis when f equals 0.1 nM, 1 nM,
or 10 nM. What is the maximal rate?
Answer: v = 5dT

f
2+f = 5 × 1.67 × f

2+f in nM mRNA
min the rates be-

comes 0.4, 2.8, and 7.0 nM mRNA
min .

(m) If the lifetime of mRNA equals 10 min, which is a realistic number
for bacteria, what is the steady state concentration of mRNA when
f = 1 nM?
Answer: We have the following mass balance with m as the con-
centration of mRNA and kdeg as the degradation rate constant of
mRNA.

dm

dt
= v − kdegm = kt × dT ×

f

KD + f
− 1

τ
×m (7.76)

with the life time of the mRNA as τ . The steady state concentration
mRNA equals,

m = τ×kt×dT×
f

KD + f
= 10×5×1.67× 1

2 + 1
= 27.8 nM. (7.77)

5. Sliding of transcription factors along DNA shortens the pro-
moter search time. In bacteria, transcription factors find their target
DNA sites, from which they regulate transcription, via shortly sliding in
1-D along the DNA, starting from a random DNA site that they encoun-
tered after a 3-D diffusive search for DNA in the cytoplasm. If during a
single slide the target site is not found the transcription factor falls off
and the process starts again. The search time for the target DNA site by
a single transcription factor molecule is given by the following equation

τs =

(
V

4πDL
+

l2s
2D1

)
L

ls
, (7.78)
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with V as the cell volume, D as the cytosolic diffusion coefficient, L as
the DNA length, ls as the sliding length and D1 as the sliding diffusion
coefficient. The search time for the target site without sliding equals

τws =
V

4πDa
, (7.79)

with a as the reaction radius of the target site on the DNA. In this question
consider the following parameters: D = D1 = 5 µm2/s, a = 5 nm,
L = 1.5× 103 µm, ls = 30 nm and V = (2 µm)3.

(a) What is the length of DNA in mm? Note that this length is a realistic
value for E. coli). What is the length of an E. coli cell? How many
times should the DNA be folded to place it in a cytosolic compart-
ment of half the length of an E. coli cell? (Can you imagine now how
weird it is that during DNA replication the two genome copies have
to unwind and separate? This is a longstanding issue in E. coli and
currently believed to occur spontaneously due to entropic forces.)
Answer: The length of DNA is 1.5 mm and the length of an E. coli
is roughly 1 µm. So DNA needs to be packages 3000 fold to end in a
compartment of 0.5 µm in length.

(b) Calculate the search time, τws, for the DNA target site without slid-
ing.
Answer:

τws =
V

4πDa
=

8 µm3

4× π × 5 µm2

s × 5× 10−3µm
= 25.5 s (7.80)

(c) Calculate the search time, τs, for the DNA target site with sliding.

τs =

(
V

4πDL
+

l2s
2D1

)
L

ls

=

(
8 µm3

4× π × 5 µm2

s × 1.5× 103 µm
+

(30× 10−3 µm)2

2× 5 µm2

s

)
1.5× 103 µm

30× 10−3 µm

= 8.7 s (7.81)

(d) Explain the meaning of V
4πDL ,

l2s
2D1

, and L
ls

in equation 7.78.

Answer: V
4πDL equals the (average) 3-D search time for DNA,

l2s
2D1

equals the (average) 1-D search time along the DNA, and L
ls

equals
the (average) number of searches before the entire DNA has been
scanned for targets.

(e) When is sliding along DNA by transcription factors advantageous?
Answer: When τws > ts which is for instance the case when the cell
volume is large and the target size is small.
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7.14 Answers to exercises of Chapter 6

1. Synthesis of cellular components by metabolism and adaptations
of metabolism upon a nutrient change.

(a) Cyanobacteria generate energy obtained from sunlight during pho-
tosynthesis. This gives rise to ATP and NAD(P)H. This energy is
used to make cellular components and to convert CO2 into carbon
intermediates of central metabolism. So, CO2-fixation and photo-
synthesis makes them special and useful, because those sunlight and
CO2 are cheap.

(b) i. The generation time equals ln 2
5.2×10−2 hr−1 = 13.3 hr.

ii. When we have 1 gram cyanobacterium then after 1 generation
time we have 2 grams cyanobacterium. So, the mmol amount
of DNA, RNA, and lipid per gram cyanobacterium needs to be
produced within one generation time. This amounts to 0.24
mmol

gram×hr × 13.3 hr for protein, 0.0053 mmol
gram×hr × 13.3 hr for

DNA, and 0.0082 mmol
gram×hr ×13.3 hr for lipid. These compounds

are made by metabolism.

iii. The precursors of DNA are: dATP, dGTP, dTTP, and dCTP.
And for RNA we have: GTP, CTP, UTP, and ATP. DNA and
RNA are both composed out of nucleotides but DNA out of the
”deoxy” form; DNA deoxynucleotides contain one oxygen less
than RNA nucleotides.

iv. (Acetyl-CoA derived) Fatty acids and glycerol derived compounds.

(c) It grows slower on glycerol; 7.9 × 10−3 1
hr on glycerol versus 5.2 ×

10−2 hr−1 on CO2. The largest changes occur in pentose phosphate
pathway, TCA-cycle and glycolysis metabolism when metabolism
shifts from glycerol to CO2 metabolism (or vice versa).

2. Measurement of the promoter activity of genes during steady-
state cell growth (Advanced question).

(a) Let’s first simplify the denominator of the promoter activity equation
(with µ as the exponential growth rate),∫ t2

t1

OD(t)dt =

∫ t2

t1

OD(0)eµtdt =
OD(0)(eµt2 − eµt1)

µI
=
OD(t2)−OD(t1)

µ

=
∆OD

µ
=
OD(t1)(eµ(t2−t1) − 1)

µ
(7.82)

Next, we simplify the numerator,

f(t2)− f(t1) = f(t1)(eµ(t2−t1) − 1) (7.83)
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Finally, we can simplify the promoter activity to (with τ as the gen-
eration time ln 2

µ ),

ρ =
f(t2)− f(t1)∫ t2
t1
OD(t)dt

=
f(t1)(eµ(t2−t1) − 1)
OD(t1)(eµ(t2−t1)−1)

µ

=
f(t1)

OD(t1)

ln 2

τ
(7.84)

ln ρ = ln
f

OD
+ ln

ln 2

τ
= ln

f

OD
+ ln ln 2− ln τ (7.85)

The factor f(t1)
OD(t1) is a concentration measure and time-independent

at balanced growth, only dependent on the growth condition; we can
therefore drop the time reference: f

OD . The generation time at the
considered growth condition equals τ . Now, note that ρ is related
to the transcription rate constant k: the growth rate is defined as
µ = ln 2

τ and the concentration as α × c = f
OD . So, ρ = α × c × µ.

When you remember the balance ċ = k − µ × c, such that we have
at steady state: k = µ × c! Therefore, the authors have measured
α× c× µ at steady state and this equals α× k.

(b) All the class one genes fall on a line when the natural logarithm of
the promoter activity for two conditions (A and B) are plotted as
function of each other because,

ln ρA = ln
fA
ODA

+ ln
ln 2

τA
= ln

fA
ODA

+ ln ln 2− ln τA

ln ρB = ln
fB
ODB

+ ln
ln 2

τB
= ln

fB
ODB

+ ln ln 2− ln τB

Class 1 genes: ln
fA
ODA

= ln
fB
ODB

⇒ ln ρB − lnµB = ln ρA − lnµA

Therefore: ln ρB = ln ρA − (lnµA − lnµB)

⇒ ln(α× kB) = ln(α× kA)− (lnµA − lnµB)

⇒ ln kB = ln kA − (lnµA − lnµB)

(c) Because they also display concentration differences between the two
conditions.

(d) Class 1 genes are constitutively expressed genes (condition unspecific)
under the two conditions whereas class 2 genes are condition specific.

3. Metabolism and growth responses of single cells exposed to nu-
trient changes. They tell you that not all cells are capable of making a
nutrient shift. So, subpopulations can occur in populations of microorgan-
isms of which some can adapt to new conditions and some not. The origin
of these subpopulations emerges from surprising stochastic behaviour of
single cells that typically has its basis in stochasticity of gene expression.

4. What sets the maximal growth rate of a bacterium? During
steady-state exponential growth – ‘balanced growth’ – the total number of
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cells, N , increases exponentially in time as N(t) = N(0)eµt with µ as the
specific growth rate in hr−1. The total culture volume and total cell mass
increase exponentially as well. Since metabolism is operating at steady
state during balanced growth, the concentrations of all molecular species
remain fixed over time such that the total number of molecules of every
molecular species increases equally fast as the total volume. If we focus on
the concentration of ribosome then we have the following balance equation
at balanced growth, with fribo as the ribosome synthesis rate per ribosome
and φribo as the fraction of ribosome that is synthesising ribosomes (i.e.
φribo = number of ribosomes synthesising ribosomes

number of ribosomes synthesising protein ),

d

dt
cribo = vsynthesis − µcribo = 0 (7.86)

= friboφribocribo − µcribo (7.87)

⇒ µ = friboφribo (7.88)

The last equation is a definition of the growth rate in terms of biochem-
istry.

(a) Calculate fribo in ribosomes per hour, given that a single ribosome
contains 7459 amino acids and that the translation rate is 20 amino
acids per ribosome per second.
Answer:

fribo =
20 aa

ribosome×s
7459 aa

ribosome

3600
s

hr
≈ 10

ribosomes

ribosome× hr (7.89)

(b) Calculate the maximal growth rate.
Answer: the maximal growth rate occurs with φribo = 1, so the cell
only makes proteins that make new proteins themselves, such that
µmax = fribo = 10 hr−1.

(c) How many doublings do you have per hour with this maximal growth
rate?
Answer: The minimal generation time equals τmin = ln 2

µmax
= ln 2

10 =
0.07 hr = 4.5 minutes. So every 4.5 minutes the cell number doubles,
therefore per hour about 13 doublings occur.

(d) Calculate the maximal doubling rate in doublings
hr .

Answer: The maximal doubling rate equals 4.5 doublings
hr .

(e) The experimentally-determined minimal doubling time (= minimal
generation time) that the bacterium Escherichia coli can attain equals
20 min

doubling . Calculate the fraction of ribosome synthesising ribosomes
at this growth rate.
Answer: µ = ln 2

τ = ln 2
20 = 0.034 min−1 60 min

hour = 2 hr−1 =
friboφribo = 10 hr−1 φribo. So φribo = 0.2, 20% of the ribosomes
makes ribosomes. The remaining 80% of the ribosome make proteins
that are not ribosomes.
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(f) In reality, φribo will always be smaller than 1 because the cell needs
always other proteins than ribosomes. Examples of the other proteins
are metabolic proteins that make amino acids out of nutrients, in
order to allow ribosomes making proteins. Therefore if φribo < 1
other proteins are made in addition to ribosomes, such that ribosomal

protein fraction of Φribo = [ribosomes]
[proteins] is smaller than 1. Show that the

fraction of ribosomes making ribosomes equals the ribosomal protein
fraction: φribo = Φribo.
Answer: At steady state, the total protein and ribosome balance
show this relation,

d

dt
cribo = friboφribocribo − µcribo = 0 ⇒ µ = friboφribo (7.90)

d

dt
cprotein = friboΦribocprotein − µcprotein = 0 ⇒ µ = friboΦribo(7.91)

⇒ φribo = Φribo (7.92)

(g) Relate the ribosomal protein fraction to the growth rate.
Answer: µ = friboφribo = friboΦribo.

(h) In reality some percentage of the ribosomes is always inactive – they
are ‘maturating’ – such that the total ribosome concentration equal
the sum of active and inactive ribosome: cribo = cAribo + cIribo and

therefore µ = fribo
cAribo

cAribo+cIribo+cm
= fribo

cribo−cIribo
cAribo+cIribo+cm

= fr(Φribo −
ΦIribo). When we use experimental data for E. coli to study the rela-
tionship between the ribosomal protein fraction (y-axis) as function
of the growth rate (x-axis), we find a linear relation (Figure 1A, in
Scott et al, Science, 2010). Use the µ = fribo(Φribo − ΦIribo) to iden-
tify what the slope and intercept of this linear relation is.
Answer: We plot Φribo as function of µ which is given by Φribo =
µ

fribo
+ ΦIribo since µ = fribo(Φribo − ΦIribo). So, the slope equals

1/fribo, which corresponds to 1 divided by the translation rate per
ribosome. The intercept equals ΦIribo, which equals the inactive ribo-
some fraction.

(i) How does the previous relation change when we inhibit translation
using a translation inhibitor (chloramphenicol) that only affect fribo
(Figure 1B, in Scott et al, Science, 2010)?
Answer: the slope increases because it equals 1/fribo and fribo is
reduced.
Add experimental figure 1AB of Scott and Hwa paper.

5. Mass flow through a steady state metabolic network. Metabolic
networks are responsible for the synthesis of energy and precursor molecules
for the construction of cellular macromolecules such as proteins, DNA,
RNA and membranes. Metabolic networks are highly branched and can
contain upto thousands of reactions. Navigating through those networks
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is therefore not straightforward and computational tools are often used
to simplify this process. Since mass balance depend linearly on reaction
rates, we can use linear algebra to study these huge networks. This linear-
ity is reflected in the mass balance equations that depend on the reaction
rates as a linear function: dx

dt =
∑r
i=1 nivi, with the ni as a (positive

or negative) fixed stoichiometry coefficient, vi as a concentrations-depend
reaction rate and r as the number of the reactions in the network. The
relation would be nonlinear when, for instance, dx

dt =
∑r
i=1 niv

m
i , with m

as a number greater than 1 and then linear algebra would not be as use-
ful. In this exercise you will realise the consequence of this linear relation,
its use and how it relates to linear algebra. We study a simplified, toy
network that has particular illustrative features shown in figure 6.7.

(a) Give the mass balances of the variable metabolite concentrations.
Answer:

dx1

dt
= v1 − v2 − v7

dx2

dt
= v2 − v3 − v5

dx3

dt
= v3 − v4

dx4

dt
= v5 − v6

dx5

dt
= v7 − v8 − v9

dx6

dt
= v8 + v9 − v10 (7.93)

(b) Consider the network at steady state with reaction rate 1 equal to 10
mM
min . Give the reaction rate values of the reactions when the effluxes

are equal to v6 = 5 mM
min , v4 = 2 mM

min , and v10 = 3 mM
min .

Answer: See figure 7.9, note that the fluxes values of v8 and v9

cannot be determined, only their sum, given the flux information of
only the input and the output fluxes.

(c) Think a bit more about the cycle, containing reaction 8 and 9, why
do you not know their rates at steady state when you only know
v1, v4, v6, and v10?
Answer Because only their sum can be determined from this infor-
mation. You only know that v8 + v9 = 3 and this can be achieved
with many fluxes values of v8 and v9 since they can have any num-
bers. For instance v8 = −5 and v9 = 8 would work or v8 = 7 and
v9 = −4; in fact an infinite number of combinations is possible.

(d) Say you would know reaction rates v3 , v5 , v7 and v9 would this allow
you to unambiguously determine all flux values?
Answer: Yes, then we would get an unique answer because if we
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know v7 then we know v8 + v9 and v10, by knowing v9 we can deter-
mine v8.

(e) Another way to look at mass flow through this network at steady
state is as if it is the superposition of 4 subnetworks, which each
can attain a steady state on their own. Which reactions would those
subnetworks contain?
Answer: One possibility is, their exist several, shown in figure 7.10,
each of those subnetworks can achieve a steady state on its own
and the steady-state flux distribution of the entire network is the
superposition – the addition – of the steady-state flux values through
each of the subnetworks (because then the entire network is also at
steady state).

(f) The flux vector j of this network is defined as the vector that contains
all the values of the reaction rates, so

j =



v1

v2

v3

v4

v5

v6

v7

v8

v9

v10


(7.94)

Write down the flux vectors, ji of the 4 subnetworks, each having
1 column and 10 rows, and put zeros at entries that correspond to
reactions that are not used in this subnetwork.
Answer: Subnetwork 1:

j =



v1

v2

0
0
v5

v6

0
0
0
0


(7.95)
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Subnetwork 2:

j =



v1

v2

v3

v4

0
0
0
0
0
0


(7.96)

Subnetwork 3:

j =



v1

0
0
0
0
0
v7

v8

0
v10


(7.97)

Subnetwork 4:

j =



v1

0
0
0
0
0
v7

0
v9

v10


(7.98)

(g) Now the statement is that the following relation holds,

j =

5∑
i=1

αiji (7.99)

with αi as the contribution of the subnetwork to the flux through the
entire network. Use the flux vector that you have identified in (b) to
find the values of αi when you set all the rates in the subnetworks to
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1.
Answer: Subnetwork 2:

j =



v1

v2

v3

v4

v5

v6

v7

v8

v9

v10


= α1



1
1
0
0
1
1
0
0
0
0


+ α2



1
1
1
1
0
0
0
0
0
0


+ α3



1
0
0
0
0
0
1
1
0
1


+ α4



1
0
0
0
0
0
1
0
1
1


=



10
7
2
2
5
5
3

3− v9

3− v8

3


(7.100)

The fifth and sixth row tells you that α1 = 5, the third row tells you
that α2 = 2, the 8th row tells you that α3 = 3− v9 and the 9th row
tells you that α4 = 3− v8.

(h) Do the αi values change when the effluxes change in value?
Answer: Yes, if the effluxes change the fluxes in the network change
such that α’s should change.

6. Operon organization in bacterial genomes. Genes are often con-
tained in groups, called ‘operons’, in bacterial genomes. Consider again
figure 6.7. We do not really understand why operon structure is as it is,
one hypothesis worked out in this exercise. We know however that this
cannot be the whole story because of all kinds of processes that distort
the gene order on bacterial genomes such as horizontal gene transfer and
because of gene shuffling due recombination events to transposons.

(a) Why would it make sense to have enzyme 5 and 6 in one operon and
3 and 4 in another? Why are those two operons expected not to have
enzyme 2 in it?
Answer: It would make sense to have reaction pairs {5, 6} and {3, 4}
always in one operon because those reaction pairs always carry the
same flux value. Since v2 = v5 + v3 it should not be in each of those
operons but in separate operon.

(b) Why are enzyme 1 and 2 most likely not in the same operon?
Answer: Because their flux values are generally not the same, since
v1 = v2 + v7.

(c) If the cycle has an additional function, not related to this pathway,
then it is expected be part of a different operon. Why could reaction
7 and 10 then still be part of the same operon?
Answer: Because reaction 7 and 10 always carry the same flux.

(d) What is the assignment of metabolic-enzyme genes into operons lead-
ing to the smallest number of operons (and the smallest number of
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genes; so do not use the same gene twice) that still allows for com-
plete flux flexibility through the network?
Answer:

• operon 1: enzyme 1

• operon 2: enzyme 2

• operon 3: enzyme 5 and 6

• operon 4: enzyme 3 and 4

• operon 5: enzyme 7 and 10

• operon 6: enzyme 8 and 9

(e) Why do you think – because I (Frank) do not know the answer – that
genes do not occur in multiple copies such that they can participate
in different operons?
Answer: One of the reasons, which is sometimes proposed, is that
when a gene is duplicated – and carries out the same function – one
copy would deteriorate by random mutations and the other would
remain functional. This holds when the duplicate copy is truly re-
dundant and carries out the same function. This would not be the
case in the scenario that we are considering now; the duplicate copy
would be in a different operon and likely controlled by a different set
of transcription factors. Nonetheless we rarely find duplicate gene
copies across bacterial genomes.

7. Why some enzymes couple ATP hydrolysis to biochemical con-
versions. In metabolism, many reactions are coupled to the hydrolysis
of ATP into ADP and Pi. In this question you will study why this is so
common. Consider the following reactions,

S
1−⇀↽− P, v1 = V1,MAX

s ·
(

1− p
s·Keq,1

)
1 + s+ p

S +ATP
2−⇀↽− P +ADP + Pi, v2 = V2,MAX

s · atp ·
(

1− p·adp·pi
s·atp·Keq,2

)
(1 + s+ p) (1 + pi) (1 + atp+ adp)

The difference between reaction 1 and 2 is that enzyme 2 couples the
hydrolysis of ATP to the formation of P out of S and enzyme 1 does
not do this. The following constraints apply in the cell: i. P should be
formed out S to allow for growth, ii. in the cell, the concentrations of P ,
S, ATP , ADP , and Pi fall within strict physiological bounds, they all
vary between 0.1 and 10 mM, iii. the equilibrium constant of reaction 1
equals Keq,1 = 10−3 and for reaction 2 it equals Keq,2 = 103 mM . (In this
question, do not consider that at the level of this reaction the adenosine
and phosphate in ATP , ADP and Pi remain fixed.) Show that reaction
2 can form P out of S inside the cell and that reaction 1 cannot achieve
this.
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Answer: The maximal rate of reaction 1 equals,

v1 = V1,MAX

10(1− 0.1
10×10−3 )

1 + 10 + 0.1
= −8.1V1,MAX

v2 = V2,MAX

10× 10
(

1− 0.1×0.1×0.1
10×10×103

)
(1 + 10 + 0.1)(1 + 0.1)(1 + 10 + 0.1)

= 0.74V2,MAX(7.101)

By coupling the reaction to ATP hydrolysis, P is made out of S which
allows the cell to grow.

8. Regulation of flux at branch points in metabolism. In metabolism
it occurs very often that a metabolic pathways branches into two di-
rections. The balance for the metabolite concentration at this junction
equals, the difference between the synthesis rate v and the two consump-
tion rates v1 and v2 corresponding to the branch rates.

dx

dt
= v1 − v2 − v3 (7.102)

v1 = V1

s
Ks

1 + s
Ks

+ x
K1

(7.103)

v2 = V2
x

K2 + x
(7.104)

v3 = V3
x

K3 + x
(7.105)

At steady state we denotes rates as fluxes and we get,

0 = J1 − J2 − J3 (7.106)

v1 = J1 (7.107)

v2 = J2 (7.108)

v3 = J3 (7.109)

x = xs (7.110)

⇒ V1

s
Ks

1 + s
Ks

+ xs
K1

= V2
xs

K2 + xs
+ V3

xs
K3 + xs

(7.111)

Set s = 10, Ks = 1, V1 = 10, K1 = 10, V2 = 10, K2 = 1, V3 = 10 and
K3 = 10.

(a) Use a plotting program, e.g. Excel, to plot the rates of the reaction
as function of x. Determine the steady state value of x.
Answer: See figure 7.11. Note that the steady state concentration is
determined by the intersection of v1 with v1 +v2. This concentration
equals 2.3.

(b) Plot the ratio v2/v3 as function of x. Why is reaction 2 more active
than 3 at low concentrations of X? Explain your result.
Answer: Reaction 2 has a lower KM for X and is therefore more
active at low X than reaction 3 is.

168



Systems Biology Chapter 7. Answers to exercises

(c) Double the maximal rate of third reaction. What happens to the
steady state flux and the concentration of x? Explain you result.
Answer: The concentration of X drops to 1.6, the flux through
reaction 3 increases, through reaction 2 it decreases, and through
reaction 1 it increases.

(d) Half the maximal rate of third reaction. What happens to the steady
state flux and the concentration of x? Explain you result.
Answer: The concentration of X rises to 3.2, the flux through reac-
tion 3 decreases, through reaction 2 it increases, and through reaction
1 it decreases.

(e) What happens when you reduce K3 by a factor of 2? Explain your
result.
Answer: The concentration of X drops to 1.7, the flux through
reaction 3 decreases, through reaction 2 it increases, and through
reaction 1 it increases.

9. Supply and demand analysis of metabolic pathways. Negative
feedback occurs often in metabolic pathways. The negative feedback
metabolite cuts the pathway into blocks or systems: a supply and a de-
mand system (figure 6.9). In this exercise you will study the basic con-
sequences of negative feedback in metabolic pathways, using a simplified
model that captures the main effects of negative feedback,

dx

dt
= Vs

1

1 +
(
x
K

)n︸ ︷︷ ︸
supply rate

− Vd
x

1 + x︸ ︷︷ ︸
demand rate

(7.112)

The basic parameter setting is that all parameters equal 1. In all plots
below, plot always the supply rate and the demand rate.

(a) Investigate the influence of n. Use Excel to plot the supply rate and
degradation rate as function of x. Vary n: set it to 1, 2, 4, 6, and 8.
Answer: See figure 7.12.

(b) Investigate the influence of K. Set n to 4 and vary K: set it to 0.1,
0.5, 1, 2, 4.

(c) Investigate the influence of V1. Set n to 1 and to 6. Vary for those
two cases V1: set it to 0.5, 1, and 2.
Answer: See figure 7.12.

(d) Investigate the influence of V2. Set n to 1 and to 6. Vary for those
two cases V2: set it to 0.5, 1, and 2.
Answer: See figure 7.12.

(e) Is it true that the effect of a strong feedback is that the concentra-
tion of x hardly changes when changes are made to either V1 or V2

(metabolite homeostasis)? And that the influence of the maximal
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rate of the demand system on the steady-state flux can greatly ex-
ceed that of the supply system if metabolite homeostasis occurs (flux
control by demand)?
Answer: Yes, this is indeed the effect of a strong feedback, which
makes v1 to steeply decline as function of x. So, feedback leads to
homeostasis of x and the flux is set by the demand process, not by
the supply process.

Metabolite homeostasis and flux control by demand have been identified
as the main functional consequences of negative feedback in metabolic
pathways.

10. Steady-state responses of metabolic pathways to changes in metabolic
enzyme concentration through gene expression. When the environ-
ment changes many metabolic pathways are adapted to the new condition
via increased or reduced expression of genes coding for metabolic enzymes.

(a) Say the steady-state flux in the pathway increases because the first
enzyme is increased in concentration. What happens to the steady
state concentrations of X1, X2, X3 and X4?
Answer: All concentration will rise. If the steady-state flux in-
creased then the substrate concentration of the last enzyme, X4,
must have increased. This leads to a higher flux through enzyme 5
but also more inhibition of enzyme 4 which should be compensated
for by an increase in x3. This inhibits enzyme 3, x2 should therefore
rise to compensate. And finally x1 should rise to compensate for the
rate inhibition of enzyme 2 by X2. x1 can rise because the enzyme
1 was increased in concentration which leads to a rate enhanced of
reaction 1.

(b) Consider the change in the steady state of the metabolic pathway
when enzyme 2 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?
Answer: The flux will generally increase, the concentration of X1

will drop and those of X2 to X4 will all rise. If the flux increases
then enzyme 1 can only run faster if product inhibition is relieved
via a lower concentration of X1. Enzyme 5 can only run faster if its
substrate is increased in concentration, x4, which inhibits enzyme 4
more and should be compensated by a rise in x3, which inhibits en-
zyme 3 more and should be compensated by a rise in x2. This rise in
enzyme 2 still leads to an increase in flux through enzyme 2 because
more enzyme was added.

(c) Consider the change in the steady state of the metabolic pathway
when enzyme 3 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?
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Answer: The flux will generally increase, the concentration of X1

and X2 will drop and those of X3 to X4 will all rise.

(d) Consider the change in the steady state of the metabolic pathway
when enzyme 4 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?
Answer: The flux will generally increase, the concentration of X1

and X2 and X3 will drop and that of X4 will rise.

(e) Consider the change in the steady state of the metabolic pathway
when enzyme 5 is increased in concentration. What would you pre-
dict for the changes in the steady state flux and the metabolite con-
centrations, i.e. X1 and X4?
Answer: The flux will generally increase, all concentrations will
drop.

11. A different look at a classical metabolic pathway: glycolysis in
yeast Central to most biochemical pathways is glycolysis, the breakdown
of glucose to pyruvate in 10 enzymatic steps. The details of the pathway
can be looked up in any textbook of biochemistry, or on wikipedia. Here
we simplify and look at some interesting aspects from a systems biology
point of view. The simplified pathway is depicted in figure 6.10

(a) make a stoichiometry matrix N of this pathway: take glucose and
pyruvate fixed, so they do not need to be balanced and are therefore
not part of the matrix. Each row represent a balance for a metabolite,
each column correpsonds to a reaction, such that N · v form the set
of balances for this system.
Answer: 

v1 v2 v3 v4 v5
˙fbp 1 −1 0 0 0
˙dhap 0 1 −1 0 0

˙gap 0 1 1 −1 0
˙atp −2 0 0 2 −1
˙adp 2 0 0 −2 1
ṗ 0 0 0 −1 1


(b) apply Gaussian elimination on this matrix to transform it into its

reduced row echelon form and decide on the number of row depen-
dencies in this pathway. Think about what such a row dependency
means in biochemical terms. For example, you should readily see
that the rows for ATP and ADP sum up to 0 (and so these two rows
are dependent). What does this mean? Provide a similar explanation
for the other dependency.
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Answer: 

v1 v2 v3 v4 v5
˙fbp 1 −1 0 0 0
˙dhap 0 1 −1 0 0

˙gap 0 0 2 −1 0
˙atp 0 0 0 1 −1
˙adp 0 0 0 0 0
ṗ 0 0 0 0 0


There are two rows with only zero’s: these are dependent rows. It
means that something is conserved. For example, ˙adp + ˙atp = 0,
which means that adp + atp = C. This is conservation of the ”A”,
adenosine. Only a phosphate is removed from ATP and put back on,
the A moiety remains. The other row of zero’s reflect the conservation
of phosphate: to get the ṗ row zero, we in the end had to do the
following: add 2 times row 1, add row 2, add row 3 and add row 4.
Hence: 2 ˙fbp+ ˙dhap+ ˙gap+ ˙atp+ ṗ = 0. These are all the phosphate-
containing species in the model! You should figure out why fbp
counts double...

(c) in the reduced row echelon form you can read off the solution to the
equation: N · v = 0. This will give you dependencies between the
steady state rates, which we call fluxes.

i. Show that indeed, in steady state, glycolysis yields 2 ATP per
glucose
Answer: Reading off the RRE form of N gives:

v2 = v1

v3 = v2 = v1

v4 = 2v3 = 2v1

v5 = v4 = 2v1

So we can conclude that v5, the rate of ATP expenditure, is two
times the rate of glucose conversion, v1. So 2 ATP was made
per Glc.

ii. Sketch the solution space (or null space) of this system in the
v1,v5 plane under the constraints that v1 > 0 and v5 > 0.
Answer: See figure 7.14.

(d) inspect in the reduced row echelon form of N what would happen
if you would not have reaction 5 in, i.e. no reaction that consumes
ATP? Do this by simply removing the last column of N . Link the
mathematical consequence to biochemical reasoning: can ATP be in
steady state, then, and why (not)?
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Answer: removing v5 gives:

v1 v2 v3 v4
˙fbp 1 −1 0 0
˙dhap 0 1 −1 0

˙gap 0 0 2 −1
˙atp 0 0 0 1
˙adp 0 0 0 0
ṗ 0 0 0 0


Now you can read that for ATP to be balanced: ˙atp = 0⇒ v4 = 0,
and hence all fluxes are 0! Simply put: if there is no consumption of
ATP, glycolysis cannot run because it produces ATP and it needs a
sink for it.

(e) now we will inspect a peculiar state that glycolysis get in. We put
v5 back in, and let’s assume that v2 and v3 act really fast and FbP,
DHAP and GAP form one pool, and effectively v1 produces 2 GAP
molecules. v2 and v3 are then simply thrown out of the model. We
remain with 3 reactions with the following kinetics:

v1 = Vm1 ·Glc
atp

atp+ 0.5
(7.113)

v4 = Vm4
gap

gap+ 1
(7.114)

v5 = k5 · atp (7.115)

Suppose now that Vm4 is really low, say 0.1 (in reality this is caused
by a low inorganic phosphate concentration whose action we model
through Vm4). Vm1 and k5 are set to 1.

i. in this state gap will accumulate to very high levels because of
the low activity of Vm4. What will then be the rate of v4?
Answer: If gap is much higher than 1 (the Km of the enzyme
catalyzing reaction 4), gap

gap+1 → 1 and hence, v4 = Vm4 = 0.1.
This rate is now independent of other metabolite concentrations.

ii. construct a rate characteristic by plotting ATP production (v4)
and ATP consumption (v1 + v5) as a function of atp. Where is
the steady state, at what flux and atp concentration?
Answer:
The two lines in figure 7.14 cross at atp ≈ 0.035 at a rate of 0.1.
Here ATP production rate equals ATP consumption rate.

iii. now we look at the balance for gap: this now reads (with v2 and
v3 removed): dgap

dt = 2v1− v4. Now construct a rate character-
istic around gap (at the steady state atp level from the previous
question!): what is your conclusion?
Answer:
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This plot, figure 7.14, is constructed with a rate of v1 that is set
by atp = 0.035. Only v4 depends on gap. Since for a balance of
GAP v4 needs to be twice as fast as v1, you can see that there
is no gap where a steady state is possible: gap will accumulate
forever. This is actually observed experimentally in some yeast
mutants!

12. Can gene expression optimise the flux through a metabolic net-
work under a constraint of fixed maximal enzyme available for
investment in the metabolic network? As biologists we are all famil-
iar with gene activity regulation leading to changes in protein concentra-
tions as function of conditions. We accept this as a fact. Why the gene
regulation functions as it does is however generally not clear. Some would
argue that the gene regulation mechanisms have evolved to maximise fit-
ness of the bacterium. Here we explore the consequences of this hypothesis
and ask whether gene regulation can maximise the fitness of a metabolic
pathway. We define the fitness of metabolic pathway as its steady state
flux divided by the total enzyme amount invested in this pathway. The
gene regulation mechanism should maximise the fitness as function of ex-
ternal conditions. Does such a gene regulation mechanism exist? And
how does its parameterisation depend on the kinetics of the metabolic
enzymes? In this question you will answer those questions yourself, step
by step. We start by introducing the metabolic network, it is the simplest
that is still realistic and illustrates all the features of realistic networks
that are clearly involve hundreds of enzymes,

S
1−⇀↽− X

2−⇀↽− P (7.116)

v1 = e1 k1
s

1 + s+ x︸ ︷︷ ︸
f1(x)

= e1f1(x) (7.117)

v2 = e2 k2
x

1 + x︸ ︷︷ ︸
f2(x)

= e2f2(x) (7.118)

eT = e1 + e2 (7.119)

dx

dt
= v1 − v2 = k1(eT − e2)

s

1 + s+ x
− k2e2

x

1 + x
(7.120)

We denote the steady-state flux by J and it is defined by the steady-state
relation,

J = v1 = v2 (7.121)

What we want to maximise is the fitness of the metabolic pathway, F ,

F =
J

eT
=

J

e1 + e2
(7.122)
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So given the amount of enzyme available, eT , we ask for the distribution of
enzymes that maximises J , which is the same as saying that we maximise
J
eT

. Maximising J
eT

is the same as minimising eT
J .

(a) Show that eT
J obeys,

eT
J

=
1

f1
+

1

f2
=

1 + s+ x

k1s
+

1 + x

k2x
=

1

k1s
+

1

k1
+

x

k1s
+

1

k2x
+

1

k2

(7.123)

(b) When eT
J is minimal then d

dx

(
1
f1

+ 1
f2

)
= 0. Why is this true?

(c) Determine d
dx

(
1
f1

+ 1
f2

)
and solve for x. Call this x, the optimal x,

denoted by xo.

Answer: xo =
√
k1
√
s√

k2

(d) Show that the relation v1
v2

= 1 leads to the relation e2 = eT
f1

f1+f2
=

eT
1

1+
f2
f1

.

(e) The problem now is that the previous relation is always true, also in

non-optimal states. However, the requirement that d
dx

(
1
f1

+ 1
f2

)
= 0

leads to an expression for f2
f1

that is only true in the optimal state,
because when x = xo we have,

0 =
d

dx

(
1

f1
+

1

f2

)
=

d

dx

1

f1
+

d

dx

1

f2
=
∂ 1
f1

∂f1

∂f1

∂x
+
∂ 1
f2

∂f2

∂f2

∂x
(7.124)

= − 1

f2
1

∂f1

∂x
− 1

f2
2

∂f2

∂x
= − 1

f1

∂ ln f1

∂x
− 1

f2

∂ ln f2

∂x

⇒ − 1

f1

∂ ln f1

∂x
=

1

f2

∂ ln f2

∂x
⇒ f2(xo)

f1(xo)
= −

∂ ln f2
∂x

∣∣∣
x=xo

∂ ln f1
∂x

∣∣∣
x=xo

(7.125)

Such that at the optimal steady state we have the relation e2 =

eT
1

1+
f2
f1

= eT
1

1−
∂ ln f2
∂x

∣∣∣
x=xo

∂ ln f1
∂x

∣∣∣
x=xo

. Determine −
∂ ln f2
∂x

∣∣∣
x=xo

∂ ln f1
∂x

∣∣∣
x=xo

and then the

equation for e2.

Answer: e2 = eT
xo(1+xo)
s+(1+xo)2

(f) The problem is that −
∂ ln f2
∂x

∂ ln f1
∂x

depends still on s, such that we have

relation that expresses e2 in terms of s and xo, and we would like to
use this relation to choose a gene regulation mechanism that relates
e2 to x only, and not to s, because the gene regulation circuit depend
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on x – for instance, because a transcription factor binds to x and
this transcription determines the synthesis of e2. Using the previous

relation, xo =
√
k1
√
s√

k2
, which holds in the optimum, we can express s

in terms of xo. What do we obtain for s and for e2?

Answer: s =
k2x

2
o

k1
and e2 = eT

k1xo(1+xo)
k2x2

o+k1(1+xo)2 .

(g) The relation that we have just found, i.e. e2 = eT
k1xo(1+xo)

k2x2
o+k1(1+xo)2 ,

relates e2 to xo; it is therefore a relation for e2,o! What should be
the mass balance for e2 to obey this relation at steady state?

Answer: For instance, d
dte2 = eT

k1x(1+x)
k2x2+k1(1+x)2 − e2

(h) Remark, not a question: The statement is now that the following
coupled metabolic-transcription-translation system,

dx

dt
= k1(eT − e2)

s

1 + s+ x
− k2e2

x

1 + x
(7.126)

d

dt
e2 = eT

k1x(1 + x)

k2x2 + k1(1 + x)2
− e2, (7.127)

gives the optimal steady-state for every value of s! Because this sys-

tem always has as steady state: x =
√
k1
√
s√

k2
, which is the requirement

for optimality! Note that the k1x(1+x)
k2x2+k1(1+x)2 is very similar to a hyper-

bolic equation of x (you can verify by plotting it for different values
of k1 and k2), suggesting that a single transcription factor that binds
to X and to the DNA suffices for optimal regulation. In fact you can

rewrite this equation into x+x2

1+2x+
(
k2
k1

+1
)
x2

which sort of corresponds

to a model of cooperative binding of the transcription factor to the
promoter with two binding sites.

(i) Another remark: Another way of solving the problem of finding an
optimal gene regulation network is to find a e2 function that makes

sure that xo =
√
k1
√
s√

k2
. This e2 function, in terms of x, is then the

steady state input-output relation of the optimal gene regulation net-
work. How can you do this? Set dx

dt = k1(eT−e2) s
1+s+x−k2e2

x
1+x = 0

and solve for x. Set this equation equal to
√
k1
√
s√

k2
and solve for e2.

Then we have found an e2 steady state that is optimal. The problem
now is that this e2 equation is still in terms of s and not in terms x –
and we want the gene network to sense the metabolic state and not

the environmental state. To solve this, solve s from xo =
√
k1
√
s√

k2
and

substitute it in the equation in the e2 relation to arrive at one that
is in terms of x, and no longer in terms of s. This is bit faster than
what was suggested above.

(j) Another remark: note that since the objective is solely defined in
terms of metabolic properties, the parameterisation of the optimal
gene network is ultimately completely set by metabolic properties
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alone. So, the gene regulation is a ‘controller’ of the metabolic system
that has the right information of the metabolic system to be able to
steer it always to the optimum, regardless of the environment. Isn’t
that amazing? I think that is the right way of thinking about gene
regulation. However this shifts the problem to identifying what the
control objective, the fitness objective, is. It is certainly not always
J/eT . How to do that is still not clear to me (= Frank).
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Figure 7.9: Flux distribution answer.
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Figure 7.11: A metabolism branch
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Figure 7.12: Supply-demand model of metabolism with a negative feed-
back loop.
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