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Abstract 
Why do evolutionarily distinct microorganisms display similar physiological 
behaviours? Why are transitions from high-ATP yield to low(er)-ATP yield 
metabolism strategies so widespread across species? Why is fast growth generally 
accompanied with low stress tolerance? Do these phenomena occur because most 
microbial species are subject to the same selective pressures and physicochemical 
constraints? If so, a broadly-applicable theory might be developed that predicts 
common microbiological behaviours. Microbial systems biologists have been 
working out the contours of this theory for the last two decades, guided by 
experimental data. At its foundations lie basic principles from evolutionary biology, 
enzyme biochemistry, cellular metabolism, cellular composition, and steady-state 
cell growth. The theory makes predictions about fitness costs and benefits of protein 
expression, characteristics of optimal metabolisms, states of maximal growth rate, 
and physicochemical constraints on growth rate. Comparing the theory with 
experimental data suggests that microorganisms aim to express proteins to optimal 
concentrations in order to maximise growth rate, also in the presence of stresses. 
This review explains the current status of the theory; its roots, predictions, 
experimental evidence, and future directions. 

Introduction 
One goal of microbiology is to explain the differences and commonalities between 
microbes, given their genetic information, molecular biology, biochemistry, ecology 
and evolutionary history. For instance, why do so many unicellular microorganisms 
respire sugars at low growth rate and initiate seemingly wasteful overflow 
metabolism at higher growth rates? Why are fast growing cell less stress tolerant? 
Do stress tolerance and growth rate always trade off? Why do microbes often form 
tiny subpopulations of hardly growing, stress-tolerant persister cells, while the 
majority is stress-sensitive and fast growing? When is one metabolic pathway better 
to use than another? And what explains the variation of lag phases of microbial 
adaptation across conditions? Can a cell robustly steer protein expression to states 
that support increased, or perhaps even maximal, fitness in the face of 
environmental dynamics? 
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Many of these questions touch on fundamentals of evolutionary biology, enzyme 
biochemistry, cellular metabolism and cellular growth. In this review, we provide 
predictions and — hopefully — understanding by taking a systems biology 
perspective on cellular protein economy, growth and fitness, using experiments, 
models and theory. We will discuss a body of theory, explain its fundaments and 
provide experimental evidence. The theory predicts common behaviours of 
microorganisms from first principles, derived from evolutionary, biochemical and 
molecular-biological considerations. The basic premise is that microorganisms have 
been selected in evolution to maximise their growth rate; this maximal growth rate 
may be very low or even zero during stressed conditions. Microbes achieve this by 
expressing needed proteins to optimal concentrations, within physicochemical 
constraints that limit the concentrations and activities of proteins. An important 
aspects of this theory is that it considers the (optimal) expression of all cellular 
proteins. It aims to be as generic as possible. Like any theory, it needs to stand the 
test of empirical validation to be able to stand the test of time. 

I. Foundational principles 
Unity of microbial life? 
Our planet is teeming with microbial life [1]. Microbial niches vary greatly and 
individual species vary in their mechanisms for energy and mass assimilation [2]. 
Microorganisms are in constant competition to scavenge nutrients for growth and 
survival. Selection filters out those that perform best, either alone or in 
communities. 

A theory about the physiological consequences of growth-rate maximisation 
strategies by microorganisms can only be widely applicable if evolutionarily distinct 
species are alike in their molecular biology and selective pressures. This appears to 
be the case: microorganisms function very similarly [3, 4]; they all obey the same 
physicochemical laws and are composed out of the same types of macromolecules. 
Thus, their basic biochemistry and molecular biology is essentially identical. 
Moreover, macromolecule synthesis routes are largely conserved. The enzymes all 
work according to the same kinetic principles [5]. The metabolic reactions that 
occur follow the same limited set of basic chemical principles [6, 7]. It appears, 
therefore, that molecular mechanisms, biosynthesis and growth can all be 
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understood in terms of the same fundamental principles. Some of these are: 
conservation of chemical elements, reaction stoichiometry, Gibbs-free energy 
potentials, and energy-equivalent recycling [8]. Thus, as Jacques Monod put it: 
“What’s true for E. coli is also true for the elephant.”  

Selection also has a highly similar influence on different microorganisms [9]. It is 
much like François Jacob once remarked, “The basic purpose and desire of each cell 
is to become two cells.”. Accordingly, genotypes are selected that produce (the 
most) offspring, despite dynamic, sometimes harsh, conditions. They either fix, or 
stably co-exist in communities. 

In this light, it is perhaps not a surprise that evolutionarily distinct microorganisms 
have such similar physiologies, i.e., metabolic behaviours. In 1924, Kluyver, then a 
Dutch pioneering microbiologist, called this similarity the “Unity of 
Biochemistry” [10, 11]. For instance, many microorganisms display wasteful 
metabolisms at high growth rate, while metabolising their nutrients more efficiently 
at low growth rate. Or, they prefer some carbon sources over others. They can 
withstand sudden stresses better at low growth rate than at high growth rate, as if 
they were prepared [12].  

If indeed many microorganisms obey the same biochemical and metabolic 
principles, and they are subject to the same physicochemical constraints and 
selective forces, then a ‘universal’ theory might be developed that describes and 
predicts microbial physiology. This review is about this emerging theory: what its 
premises and predictions are, its roots, its experimental evidence, and future 
directions.  

We provide and explain the basic equations in the main text rather than relegate 
them to appendices. We hope that we do not scare away experimentalists. In fact, 
we aim for the opposite, to provide the reader with concrete food for thought. We 
are explaining a developing quantitative theory after all, with well-defined 
quantitative, experimentally testable principles and models. We believe that this 
theory is useful, accessible and insightful to many microbiologists — theoreticians 
and experimentalists alike. 
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As is the case for all scientific endeavours, it is hard, if not impossible, to provide a 
complete overview of the underlying literature. We have, therefore, chosen to 
provide the main references that we think are minimally needed.  

A universal fitness measure 
The common concept of the fittest genotype is that it increases most in frequency 
when competing with others [9, 13]. This competition may occur in a dynamic 
environment with varying nutrients, periods of famine and stresses. The eventual 
winner, at some moment in time, left the most offspring: its fold change in 
abundance was the greatest.  

Let’s be precise. We denote the number of cells of a genotype at time  by . Its 

net fold change after (evolutionary) time  equals, 

    , 

with  as the fold change in the j-th epoch, which we shall denote by  

from now on, that lasted  time. The net fold change equals the product 

of the fold changes of the sequence of epochs. Epochs may have different stresses or 
nutrient levels.  

The geometric fitness  over the entire time period is defined as [14, 15],  1

 , 

with  denoting an average value. Note that  equals the probability of 

observing epoch . If only a single environment occurred, during which the micro-

organism grew at a constant growth rate , then ; this explains why we 
consider the logarithms of the fold changes in abundances and divide by the total 
elapsed time. 
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 is indeed a fitness measure, because the ratio of the abundance of a mutant ( ) 

over a wild type ( ) evolves, in the simplest case as, 

   , 

the difference between the fitness of the two strains, i.e., . Clearly, the 

fastest grower becomes most abundant. Thus, one can think of , when defined for 
a sequence of environments, as a net growth rate.  

Two extreme cases can now be considered. Lewontin and Cohen [16] considered a 
randomly changing environment (the random limit). They assumed that the fold-

change factors  are independent random variables (independent 

also of ). They argued that then 

    

with  and  as the mean and variance of the fold change per unit of 
time, respectively. This result indicates that, when conditions are very 
unpredictable the microorganism with the highest average growth rate, , will 
not necessarily win. It may lose from a competitor that has a lower fitness variance 

 across conditions, for example, because it is better equipped with 
signalling systems. 

The non-random limit is reached when microorganisms always adapt perfectly and 
instantaneously to new environmental conditions (i.e., in the absence of lag phases 
and phenotypic heterogeneity); then, exponential growth occurs, and 

     . 

Geometric fitness is now equal to the average specific growth rate across all 
conditions,  2
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   . 

Here  is the probability of environment  during which the growth rate equals . 

Maximal fitness now requires maximisation of the mean growth rate. 

In between those two limiting cases lies any realistic case. The analyses then 
becomes more involved. Lag times, phenotypic heterogeneity and diversification, 
stresses, and fitness costs can, however, still be introduced. This makes the theory 
harder to interpret, but still intelligible [17, 18].  

Different microorganisms may have different strategies to deal with the same 
dynamic environment. Accordingly, they vary in their fold change value in the same 

environment. Who wins depends on their net behaviour, their  value. This might 
be a microorganism that performs badly in some environments and really well in 
others. It can also be a microbe that performs reasonably well in all environments. 
It can be one that makes persisters cells to prepare for future, extinction-
threatening conditions, one that senses and aims to adapt quickly, or one that is 
always stress tolerant, at the expense of its instantaneous growth rate. Who wins 
depends also on the exact dynamics of the environment. Using fitness theory, the 
pros and cons of the three fitness-maximisation strategies can be compared [e.g. 14, 
15, 19]. 

The theory we will introduce below assumes that microorganisms always aim to 
maximise their growth rate. This leads, without major assumptions, to 
microorganisms that have a mixed growth-rate-maximisation and stress-tolerance 
strategy that is dependent on growth rate. At low growth rates, they prepare for 
future adverse conditions. At high growth rate, they invest all resources into growth, 
at the expense of stress tolerance, and phenotypically diversify into growing and 
stress-tolerant subpopulations. To us, this makes sense as most environments are 
unpredictable, certainly from the perspective of the microorganism. In all cases, 
growth rate is limited by constraints acting on protein concentrations — in addition 
to physicochemical limits. 
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Genetic variation 
Genetic variation arises continuously in microbial populations, e.g. during DNA 
replication, due to toxins, etc. The mutation frequency of E. coli MG1655 equals 

 mutations per nucleotide per generation or, equivalently,  
mutations per genome per generations [20]. For E. coli, with a genome size of 

 bp’s, this means that a population size of  cells contains 

on average all single point mutations. That is about  cells, which 

corresponds to 1 ml of a E. coli M9 -glucose culture at an OD600 of 1. Hence in 5 ml 
of such a culture, all single point mutations are present with certainty.  

Fixation of microbial genotypes is fast: it only takes 530 generations before a single, 
5%-faster-growing mutant-cell has reached a frequency of 50% in a population that 

started with  cells. Many laboratory evolution experiments indeed show 
substantial fitness increases in less than 1000 generations [21, 22]. One cannot 
exclude, in principle, that microorganisms have evolved optimal circuitry for 
regulation of protein expression that maximise growth rate. Certainly not on the 
presumption that their evolution would be slow. On the contrary, we think. 

Although evolution is fast, we do not have to worry about it much during growth 
experiments in the lab. When cells are grown from a stock in batch or chemostat to 
study cell physiology, roughly 10-20 generations are considered, and fixation of 
genetic variants does not play an important role. Therefore, during the studies that 
we provide as evidence below, we will generally not have to consider different 
genotypes. 

Evolution: innovation and pruning 
The mean growth rate  of a population of competing genotypes changes in time 
because faster growing genotypes become relatively more abundant. In 1930 Fisher 
published a theorem [23], now known as Fisher’s theorem, indicating that the rate 

of change of  equals the genetic variation in the growth rate, i.e., . 

This corresponds to intuition: If a greater spread (variance) in fitness exists, some 
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dt
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genotypes grow much faster than others, outgrow them quickly and the population 
growth rate varies greatly. 

However, evolution is, for all we know, everlasting; there is at least no reason to 
believe it is now nearing its end. How can a microorganism then ever behave close 
to its optimal behaviour if evolution continues indefinitely? We need to address this 
question, because in the theory we shall be outlining below, we will assume that 
microorganisms operate close to their optimal behaviour.  

The answer is twofold. First, a microorganism can attain a maximal growth rate  
only given its genotype, by expressing the right combinations of proteins at the 
right concentrations (without its growth rate being evolutionarily maximal; it is 
maximal given its current capacities).  

Second, we should distinguish two complementary evolutionary processes, 
innovation and pruning. Innovation is the evolutionary emergence of new 
capabilities, such as the evolution of novel metabolic pathways that degrade 
plastics, via horizontal gene transfer or evolution after gene duplication. Pruning 
refers to the improved exploitation of existing capacities. It proceeds via mutations 
too, such as via those that lead to improved protein expression. Pruning improves 
phenotypic adaptation; innovation facilitates exploration and niche expansion. 

Evolutionary pruning improves phenotypic adaptation to growth-supporting 
conditions, leading to faster adaptation and an increased growth rate. Mutations in 
key transcription factors or in promoter sequences are an example [21, 24].  

One possible outcome of evolution is that microorganisms have evolved protein-
expression control strategies that allow them to maximise growth rate in each 
condition, and that these strategies work optimally regardless of which metabolic 
proteins are being regulated [25, 26]. Thus, evolution may have stumbled on 
regulatory motifs of protein expression that are capable of optimal expression 
across conditions, regardless of conditions. 

Thus, after four billion years of evolution, current microorganisms may have 
optimal protein-expression control systems that maximise growth rate, even though 
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they are still subject to evolution. For something as important and conserved as 
ribosomes, there is convincing evidence that this is indeed what cells are capable of 
(see below) [27, 28]. 

Thus, in our view, a cell may be able to express proteins optimally to give rise to the 
maximal growth rate. Accordingly, the objective of many, if not all, (gene-
expression) control systems in a cell is then ultimately to contribute optimally to 
this “goal”. We will say more about this control strategy below, where we will make 
it explicit. Whether or not a microorganisms always reaches its maximal growth 
rate, because its proteins have been optimality expressed, does not mean that its 
growth rate cannot still increase via mutations, e.g., via those that alter kinetic 
constants of enzymes. 

The pressing question is therefore whether microbes are indeed capable of optimal 
expression of its proteins to maximise its growth rate, such that, regardless of the 
environmental conditions they are confronted with, they will adapt their protein 
expression until growth rate is maximal in that condition. No alternative protein 
expression state would then have a higher growth rate.  

Optimal protein expression can be tested experimentally and compared to 
theoretical expectations. And, indeed, experiments indicate optimal protein 
expression. But before we review the evidence, we will shortly discuss the 
quantitative definition of growth rate in constant conditions. 
 

Balanced growth of cell populations 
When a population of (isogenic) microorganisms is cultivated under constant, 
excess-nutrient conditions it generally settles in a state of steady-state growth. 
Then, all the properties that are proportional to mass (extensive properties) 
increase exponentially in time, at a fixed rate (Figure 1). The ratios of extensive 
properties (intensive properties, such as concentrations;) remain constant. This 
state is formally called “balanced growth” [29].  

Two views exist on the balanced growth state: a population-level, macroscopic view 
and a single-cell, microscopic view. The microscopic view [e.g. 30] has recently been 
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reviewed [31]. The theory we discuss in this review is limited to the macroscopic 
view. In that description, we refer to the average cell, typically at steady state. It is, 
therefore, relevant to consider to which state of a single cell that corresponds. 

In the microscopic perspective on balanced growth, individual cells differ in their 
birth and division sizes, durations of their cell cycles and molecular content, all due  
to the inherent stochasticity of molecular processes [31]. At balanced growth, such 
single-cell properties obey time-invariant probability distributions [31]. Thus, over 
time, the observed sizes at birth and division all obey, for instance, normal 
distributions with fixed variances and means. These distributions can be measured 
with real-time imaging of the growth of single cells [32], using, for instance, also 
fluorescent reporters of gene expression. Results from single-cell experiments are 
generally remarkably close to theoretical expectations [33]. 

The balanced growth state of a cell in the macroscopic theory corresponds to a cell 
in the microscopic theory that has the mean age  in the growing population [31].  ⟨a⟩

Page  of 13 73

Figure 1. Experimental illustration of balanced growth. A fluorescent-protein 
expressing B. subtilis strain was grown in mineral medium on glucose in shake flask. Samples of it 
were measured in a flow cytometer. This data was reproduced from Nordholt et al. (Nordholt, van 
Heerden et al. 2017) .
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This mean age is related to the mean generation time  of cells as (see the 

Appendix) 

     . 

Thus, in the macroscopic theory we refer to the average cell that has completed its 
cell cycle by about 44%. We can also use the microscopic theory to calculate the 
mean copy number of a molecule, made by a zero-order process with rate constant 
, that the average cell contains. Then, we indeed recover the expected macroscopic 

value, , with  as the (balanced) growth rate of the population (see the 
Appendix). We note that these two results hold when it is assumed that no variation 

of generation times exists, thus the variance of generation times  equals zero 

(see Appendix). The assumption that  can therefore be viewed as a 

macroscopic limit of the microscopic description. Since real populations have a 
nonzero variance in their generation times the macroscopic theory is an 
approximation. 

In balanced growth, the extensive properties all grow exponentially in time, at the 

same specific growth rate   (Figure 1) [29, 31]: 

     

with  is the (bio)mass of the culture,  the total cell volume of the culture,  the 

number of cells, and  the copy number of the i-th molecule. 

We note that the growth rate  is sometimes called the specific growth rate. It 
captures the rate of synthesis of new cells per unit cell, or, equivalently, the rate of 
protein synthesis per unit protein. In the text below, we shall often omit the 
adjective “specific”. 

Finally, individual cells are not always in the average state that the macroscopic 
description of balanced growth refers to. This becomes clear when we, for instance, 
consider E. coli, which can have generation times that exceed the replication time of 
its genome [34, 35]. Accordingly, DNA replication is not continuous along the cell 
cycle. It starts after a certain time after birth. The concentration of DNA changes 
due to its synthesis, whereas before that time it only decreased because of dilution 
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by cell-volume growth. The same applies to septum formation, which is happening 
at later times in the cell cycle [35]. Thus, individual cells do not experience constant 
concentrations of all molecules during their cell cycle and the metabolism of single 
cells may adapt during the cell cycle [35].  

Thus, the macroscopic theory of balanced growth that we present below describes 
the average behaviour of a population of single cells. 

At balanced growth, metabolism is at steady state 
From the relations for extrinsic properties given above, it follows that the 

concentration  of all molecules in the cell are constant at balanced growth 
(see Appendix). The rates of all cellular reactions are then constant too, as they 
depend on those (constant) concentrations [8].  

If we consider the stoichiometry and rates of all cellular reactions then we obtain at 
balanced growth that [8, 26, 36], 

     , 

with  as the stoichiometry matrix (containing the reaction stoichiometries),  as 
the steady-state flux vector that depends on the concentrations (and kinetic and 
environmental parameters), and  capturing the dilution of molecules due to cell-
volume growth. This equation tells us that the concentration of molecules stays 
constant when their net synthesis rate is balanced by an equal dilution rate.  

Note that this formalism is not restricted to metabolites only, but also applies to the 
concentrations of macromolecules at balanced growth, such as proteins, lipids and 
RNA/DNA. When only metabolism is considered, dilution by growth is neglected 
based on the (often implicit) assumption that metabolic fluxes ( ) are much faster 

than dilution by growth. In steady state, we then arrive at . Flux values can 
now be estimated using linear programming methods, such as Flux Balance 
Analysis (FBA) [37]. We will come back to this modelling formalism shortly. 

The entries of the flux vector are in fact rates of enzymatic reactions whose kinetics 
depend on the concentrations, e.g., following Michaelis-Menten kinetics. We find it 

c = n /V

1
V

dn
dt

= Nj(c) = μc

N j(c)

μc

ji
Nj ≈ 0
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useful to distinguish the rate (or activity, symbol ) of an enzyme and a particular 

steady-state flux through that reaction, denoted by . The rates  can be a function 
of time. We will further only consider the steady (or balanced) state, to which the 
dynamics generally settle if the environmental conditions are constant for long 
enough [38].  

Relevant properties of enzyme kinetics 
Many different catalytic mechanisms of enzymes exist [5, 39-41]. One reason is that 
enzymes vary in their number of substrates, products and effectors. Another is that 
the order of binding of the reactants can vary. This leads to different catalytic 
mechanisms, e.g., ordered, random, ping pong, etc. However, all enzyme-catalysed 
reactions, in the absence of metabolite channeling, have something in common: the 
rate of an enzyme-catalysed reaction is proportional to the concentration of the 
enzyme. It can be shown that for all enzyme mechanisms, the rate of the enzyme 
obeys  (see Appendix) [42].  

Furthermore, enzyme-kinetic rate equations have a common structure [43],  

     ,  

with  as the forward catalytic rate constant,  as the concentration of enzyme, 

and  is a nonlinear function of metabolite concentrations ( ) and parameters 
(e.g. kinetic constants and environmental conditions).  

The rate of an enzyme has an upper and a lower bound , i.e., the 

maximal forward rate of the enzyme equals  and the maximal backward 

rate  [5].  

The function  is sometimes called the saturation function (although strictly 

speaking,  corresponds only to enzyme saturation if the reaction is irreversible) 
and is bounded:  

   , 

which we exploit below.  

v
j v

v(λeT) = λv(eT)

v = k+
cat ⋅ e ⋅ f (m)

k+
cat e

f (m) m

−k−
cate < v < k+

cate
V+

max = k+
cate

V−
max = k−

cate

f (m)
f (m)

−k−
cate < v < k+

cate ⇒ −
k−

cat

k+
cat

< f (m) < 1

Page  of 16 73



These are the only enzyme kinetic principles used in the theory. 

Physicochemical limits 
Rates of biosynthetic reactions are bounded by the concentrations of the catalysing 
enzymes [5], which are, in turn, bounded by the cellular capacity to contain proteins 
in its compartment [44]. Those bounds of enzyme-catalysed reaction rates are 
“cellular”.  

Rate limits also exist that are “physical”. They provide an upper bound for reaction 
rates of bimolecular reactions in the cytosol, in the membrane, and between a 
membrane-embedded and an extra- or intracellular molecule [45-47]. Physical 
limits are hit when enzymes convert substrates faster into products than the rate at 
which diffusion can replenish these, so that concentration gradients occur. This 
effect is enhanced when substrates are scarce. 

Due to the unintuitive, erratic properties of random walks, the number of 
membrane proteins required for maximal collision rates of extracellular substrates 
and membrane receptors is, however, much lower than one would expect, far below 
1% [45]. Yet, membranes are packed with protein [48].  

Although increased concentrations of enzymes enhance reaction rates [5], it also 
enhances crowding and viscosity, which lowers diffusion rates [49]. It has been 
suggested that protein synthesis inside cells operates close to its diffusion limit [50]. 
It has also been proposed that cells have an optimal protein density that maximises 
reaction rates [51].  

Taken together, this suggests that optimal allocation of biosynthetic resources over 
protein synthesis (and its reallocation when conditions change to prevent growth-
rate reducing over- and underexpression of proteins) indeed has an impact on 
cellular fitness. Below we will provide evidence that microbes indeed appear to 
display such optimal behaviour. 
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II. Fitness effects and optimality of protein expression 
Biosynthetic resources for protein expression are limited 
Cells have a finite rate of protein synthesis, because of finite concentrations of 
available RNA polymerases, ribosomes, amino-acid loaded tRNAs, etc., that limit 
enzyme rates [52]. Thus, “genes compete for biosynthetic resources”. The 
biosynthetic resource demand of one gene that suddenly becomes active will come 
at the expense of the biosynthetic resources used by others.  

During steady-state growth, each active gene has a fixed biosynthetic resource 
demand, required to keep the concentration of its cognate protein constant in the 
face of degradation and dilution by growth. Cells have a finite capacity to store 
proteins (e.g., in their periplasm, plasma membrane or cytoplasm; Figure 2), to 
insert proteins in membranes, and to export proteins over membranes. 

We believe that biosynthetic resource competition has shaped cell physiology [52]. 
It leads to bounds on cellular growth rate — in addition to physicochemical bounds 
— that enforce particular metabolic behaviour. In our view, in agreement with that 
of others [27, 53-55], evolution has led to optimal allocation of limited biosynthetic 
resources over cellular proteins, such that protein concentrations are optimal and 
maximise growth rate. 
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Figure 2. Cellular compartments have finite protein storage capacities. 
In the theory, protein compete for biosynthetic resources, like RNA polymerases, sigma factors, 
nucleic acids, ribosomes, amino acids, etc., and space, as shown in this figure. 



Growth-rate effects of the allocation of limited biosynthesis  
It turns out that thinking about the outcomes of the allocation of limited resource 
allocation is rather straightforward. Consider, for instance, beta-galactosidase, 
which is required for lactose growth, but a burden during glucose growth. A cell 
growing on lactose as its sole carbon source does not grow when it does not express 
beta-galactosidase. Thus, the growth rate increases when a cell starts to express it: 
the protein is now still underexpressed. Above some threshold expression level (the 
optimal level), the growth rate will reduce again, because beta-galactosidase is 
overexpressed and its synthesis goes at the cost of other protein concentrations. 
One should therefore expect some optimum in the protein expression.  

This has been tested experimentally with enzyme-titration experiments (Figure 3). 
The microorganism is then grown under a condition where the titrated protein is 
needed, and the growth impact is the difference between the benefit and the cost of 
a protein [e.g. 56, 57]. In the hypothetical case that the enzyme would not cost 
anything and we only look at the benefit of a protein, one should expect a hyperbolic 
relationship, with maximal benefit at low enzyme level, and diminishing benefit as 
the enzyme level increases to higher levels when it becomes progressively more 
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Figure 3. Illustration of enzyme titration and optimal protein-
expression by a wild type L. lactis (A) and E. coli (B) strain. A. Three 

glycolytic enzymes and an operon display optimal expression levels in L. lactis (Koebmann et al., 
2002, Koebmann et al., 2005, Koebmann et al., 2006, Solem et al., 2007, Solem et al., 2008). B. 
H+-ATPase of E. coli is optimally expressed in two growth environments (Jensen et al., 1993).



overexpressed [58]. Protein costs are expected to reduce the growth rate in a linear 
manner, as we will discuss below.  

The relation between growth rate and the (titrated) expression level of a needed 
protein therefore generally displays an optimum [56]. Remarkably, it is often 
observed that the titrated optimum coincides with the wild type growth rate and 
corresponding protein expression (Figure 3) [59-63]. (However, exceptions exist 
too, perhaps hinting at evolutionary trade offs [64, 65]). Such optimal protein 
expression by the wild type has indeed been found for Lactococcus lactis, 
Escherichia coli and Saccharomyces cerevisiae, three microorganisms that are 
evolutionarily unrelated; L. lactis is a gram-positive prokaryote, E. coli is a gram-
negative prokaryote, and S. cerevisiae is a eukaryote [59-63, 66, 67].  

Thus, optimal protein expression has been found at different growth conditions, for 
different proteins. We view this as a stunning result that indicates to us that 
microorganisms are capable of optimising protein concentrations. 

The fitness costs of an unneeded enzyme 
The cost of a protein can be investigated by artificially titrating the level of an 
enzyme under conditions when it is not needed. Titration of, for instance, beta-
galactosidase under glucose growth then indeed reduces growth rate [68-71] (Figure 
4).  

In those studies, one result is particularly surprising: the relationship between 
growth rate and unneeded protein expression is linear. We can explain this 
behaviour with a simple model if we accept one peculiar assumption, that of “even 
competition for resources” [58]. All pre-existing protein concentrations then reduce 

by the same fraction  after the gene activity of an unneeded protein is changed and 
a new steady state of growth is established.  

We denote the total (cellular) protein concentration (total proteome) by . When 

the unneeded protein is not expressed,  equals the sum of all needed protein 

concentrations 

λ

pT

pT
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      .  

When unneeded protein is expressed, the proteome available for needed proteins 
decreases: 

       

with  and . Thus, each needed protein is reduced in 

concentration by the factor . We already established that the activity of an 

enzyme, , is proportional to its concentration such that ; 

Hence, .  

Since the growth rate  of a cell equals its overall protein synthesis  divided by 

total cellular protein (derived below), we obtain that, 

   .  

pT = ∑
i

pi,N

pT − pU = pT(1 − ϕU) = ∑
i

p′ i,N

ϕU = pU /pT p′ i,N = (1 − ϕU)pi,N

(1 − ϕU)
v vi(λpi,N) = λvi(pi,N)

λ = 1 − ϕU

μ jp

μ(λpT) =
jp(λpT)

pT
= λ

jp(pT)
pT

= λμ(pT)
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Figure 4. Illustration of the fitness cost (growth-rate reduction) due to 
the expression of an unneeded enzyme. The black line illustrates a fit with 

slope -2.7, indicating that growth rate is zero at an unneeded protein expression of 37% 
(Bentley et al., 1990, Dong et al., 1995, Snoep et al., 1995, Scott et al., 2010). 



Thus, finally we obtain   in the even (or passive) competition 

model. The growth rate decreases linearly with the unneeded protein fraction .  

However, the experimental data of Figure 4 suggests that the slope deviates from 
. One possible explanation is the following: the unneeded protein is always 

expressed in a particular compartment of the cell, say in the cytosol. Then the 
unneeded proteins compete for resources with other cytosolic proteins, and its 
expression fraction amongst all the proteins it competes with equals . But we 

always plot the fraction of unneeded protein in the entire protein pool  of the cell.  

Thus, we plot . Then we have to change the equation we derived above to,  

    , 

with . The data shown in Figure 4 has a slope of -2.7 indicating that 

, suggesting that 37% of all cellular protein is cytosolic. (An 
improvement of this equation can be obtained by also taking into account that this 
protein competes only with proteins using the same sigma factor. We do not do this 
here.) 

The fitness potential of an enzyme 
To better understand growth-rate versus needed-protein concentration 
relationships, we derived theory that predicts their slopes [58]. We again made the 
assumption that the total protein concentration of a cell is constant, and that the 
rate of an enzyme-catalysed reaction is proportional to the concentration of enzyme. 
We also assumed that the experimentalist sets the concentration of the titrated 
protein and that the cell optimally allocates the remaining protein concentrations 
over its needed reactions. As before, we defined the growth rate as the protein 
synthesis rate  divided by the cellular protein concentration .  

Under those assumptions, the normalised slope of the dependence of the growth-

rate on the concentration of protein  equals (see Appendix) [58] 

    ,  with . 

μ(pU)/μ(0) = 1 − ϕU

ϕU

−1

pU /pT

PT

pU /PT
μ(pU)
μ(0)

= 1 −
PT

pT

pU

PT

PT /pT > 1
pT /PT ≈ 0.37

jp pT

i

Ωi =
d ln jp /pT

d ln pi
=

C jp
pi

−
pi

pT

1 − pi

pT

C jp
pi

=
∂ ln jp
∂ ln pi
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We refer to this coefficient as the fitness potential of an enzyme. This equation 
expresses the change in the growth rate (fitness) when the concentration  of a 

protein  is changed. The equation gives an exact definition of the terms enzyme 

u n d e r e x p r e s s i o n ( ) a n d o v e r e x p r e s s i o n 

( ). 

The  coefficient indicates whether a protein has any fitness effect at all. (In 

metabolic control analysis such terms are called flux control coefficients [72, 73].) 

 quantifies the fractional change in the protein synthesis rate when the protein 

concentration is slightly perturbed, without the readjustment of the other enzymes 

to an optimal state. If  is high, the protein has a strong control on protein 

synthesis. Enzymes that have a  that is close to 1 have the greatest influence on 

fitness, regardless of their protein fraction. Unneeded proteins have a  of zero. 

For such proteins, integration of  again reveals the linear relation between growth 
rate and the unneeded protein fraction (see Appendix). 

Abundant enzymes have low  values, and, therefore, have according to the 

 equation, a stronger fitness influence than scarce enzymes. Abundant enzymes, 
such as ribosomes or the glycolytic enzyme glyceraldehyde 3-phosphate 
dehydrogenase, should therefore be more carefully tuned in concentration than 
transcription factors, which are low in abundance. This also makes sense, as an 
abundant enzyme with say  that is 5% removed from its optimal level 
corresponds to a significant waste of resources. This suggests that an order exists 
for the evolutionary need of tuning enzyme concentrations: the order of their 
abundance. Evolution then proceeds in the direction of diminishing returns. 

At the optimum, a change in the enzyme level can only reduce fitness. In this 
optimal state, we find that the flux control coefficient equals the fraction abundance 

of the protein:  [74]. This indicates that abundant proteins have a high 

control coefficient on protein synthesis and therefore on the growth rate.  

pi

i

ΔFi > 0 → C jp
pi

> pi /pT

ΔFi < 0 → C jp
pi

< pi /pT

C jp
pi

CJp
p

C jp
pi

C jp
p

C jp
pi

Ωi

1 − p /pT

Ωi

p /pT ≈ 0.2

C jp
pi

= pi /pT
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Properties of genetic circuitry that can optimise protein levels 
Thus, cells are capable of expressing needed protein to optimal concentrations, 
across conditions (Figure 3). This implies that their molecular control circuitry, 
responsible for (tuning of) protein expression, work in such a way that growth rate 
is maximised [25]. Microorganisms achieve robust growth-rate maximisation, 
because their regulatory circuitry works optimally and steers protein expression to 
optimal states. But isn’t optimal steering of gene expression a “biochemically hard 
problem”?  

Typically, in microorganisms, regulation of gene expression of (metabolic) proteins 
is achieved by binding of a metabolic intermediate — the “sensor” — to a 
transcription factor, affecting its affinity for promoter sequences. For instance, 
fructose-1,6-bisphopshate binds to the transcription factor Cra and inhibits Cra 
from binding to promoter sequences [74]. 

Several theoretical studies have focussed on finding a characterisation of optimal 
genetic circuits, using numerical methods [25-28, 65, 75, 76]. These papers indicate 
that numerically parameterising a circuit that achieves optimal steering is rather 
straightforward (see Appendix). The idea is to first solve the optimal allocation of 
resources over protein synthesis numerically as function of environmental 
conditions, using numerical optimisation of only the metabolic model. Then the 
optimal relationship between the optimal sensor concentration and the metabolic 
proteins are known. This relationship is the optimal input-output relation of the 
genetic circuit. This optimal genetic circuit is found by fitting its steady-state 
behaviour to this input-output relationship. When we did this for galactose 
metabolism in S. cerevisiae it turned out that only a few kinetic parameters in the 
gene circuit influenced optimality, as if evolution of only those could tune the 
optimal input-output relationship. The remaining could, for instance, be useful for 
noise suppression [75].  

We investigated the general mathematical formulation of optimal control of gene 
expression [25]. Its most important finding was that if a  metabolic network, with a 

single total-protein constraint, should display robust optimisation against  

environmental parameters, e.g., nutrient concentrations, then minimally  

N
N
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metabolites should control gene expression. It turns out that simple biochemical 
binding events between metabolites, transcription factors, and promoters are 
sufficient to achieve such optimal control of gene expression. This corresponds, e.g., 
to the binding of a metabolite to a transcription factor of which two, for instance, 
cooperatively bind to the DNA to enhance transcription. We provide the theoretical 
analysis of an example in the Appendix.  

The observed optimal expression of protein requires that regulatory circuits of gene 
expression that can optimise. These are, surprisingly, biochemically not hard to 
construct, suggesting that is also not a huge problem for evolution to have stumbled 
onto them, independently and many times [25]. 

Optimal regulation of ribosome concentration in E. coli 
Ribosomes are abundant proteins and, therefore, if we can use the fitness potential 
equation as a guide, their synthesis should be carefully tuned to keep them at their 
optimal levels at all times. Two studies analysed the regulation of the ribosome 
concentration in E. coli from the perspective of optimal resource allocation [27, 28]. 
Those studies have been inspired by work that dates back decades ago [53-55, 77]. 
These studies agree on the statement that ribosome concentrations are tuned in 
such a way E. coli to prevent overexpression, about 85% of the ribosomes are 
actively translating. 

The regulation of ribosome concentration with growth rate works as follows [78]. 
When too many ribosomes are expressed, or when an amino acid is limiting, so that 
the unloaded-tRNA concentration is high, ribosomes bind more often to unloaded 
tRNA, leading to the synthesis of ppGpp by RelA. When ppGpp is made, it can bind 
to ribosomal promoters, in concert with DksA, lowering their affinity for RNA 
polymerase. RNA polymerase then binds more often to non-ribosomal (catabolic) 
operons, leading to an enhancement of amino acid synthesis, an increase of loaded 
tRNA concentration, decrease in ppGpp, and a reestablishment of a steady state at 
higher growth rate. When ribosomes are underexpressed, for instance when 
nutrient conditions improve, the converse happens; ppGpp concentration is low, 
more RNA polymerases allocate to the ribosomal promoter to enhance the ribosome 
concentration, and establish a novel steady state, again at a higher growth rate. 
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Using simulations, Bosdriesz et al. [28] and Scott et al. [27] showed that the known 
regulatory circuitry, involving ppGpp, is indeed able to maximise cellular growth 
rate, defined as the protein synthesis flux per unit invested protein. This suggests 
that indeed E. coli controls its ribosome concentrations in a manner that maximises 
its growth rate. That E. coli’s expression of ribosomes might be close to optimal is 
also shown by Bollenbach et al., who sequentially removed ribosomal promoters (E. 
coli has 7 of them) and found a growth rate maximum at the promoter combination 
active in the wild type [79].  

One view on the regulatory circuit for ribosome expression is, therefore, that its 
control objective is to prevent wasteful under- and overexpression of ribosomes by 
keeping its saturation function  as close to 1 as possible. This had already been 
suggested decades ago [54, 55]. In fact, Kjeldgaard wrote in 1963 [53], five years 
after he, together with Maaloe and Schaechter, established the (almost) linear 
relationship between ribosome concentration and the growth (Figure 4), 

“In other words, the number of protein-synthesising units within the bacteria is 
regulated in such a way that individual units always function at the same rate. If 

this fixed rate of protein synthesis per ribosome [note: ] is assumed to be 

fr(m)

fr(m)
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Figure 5. Linear relation between ribosomal activities and growth rate 
in E. coli and S. cerevisiae. Data is from Scott et al. (2010) and Metzl-Raz et al. (2017).
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optimal, or nearly so, it is clear that RNA synthesis in the cell is regulated in a 
manner which affords a high degree of economy to the growing cell. This again 
would mean a selective advantage in the competitive environment in which 
bacterial species have probably evolved. It would be tempting to assume that such 
constant efficiency also applies to the synthesis of other macromolecular species of 
the bacteria.” 

When the saturation function is (high and) constant, the ribosomal protein fraction 
in E. coli should become a linear function of the growth rate, which we shall show 
below. This relation was first found experimentally in 1958 [77] and has recently 
been studied by Scott et al. [71] (Figure 4).  

We expect that the linear relation between ribosomal protein fraction and growth 
rate holds for all microorganisms. In fact is has been found for quite a few 
microorganisms already [71, 80, 81]. Suggesting that they all try to prevent 
ribosome overexpression that would be a fitness cost. The linearity may have a 
surprising evolutionary origin. When the maximisation of a flux per unit protein is 
the objective, it is advantageous that enzymes have high affinities for substrates (to 
enhance substrate saturation) and low affinities for products (to prevent inhibition). 
This can therefore be expected to happen in evolution (assuming this introduces no 
trade-offs) as well. It turns out that this condition is exactly the limit in which the 
relationship between growth rate and protein fraction becomes linear. (We 
illustrate this with a simple example in the Appendix.) This might still be an 
unlikely coincidence, but we doubt that. 

That evolution towards maximisation of flux per unit invested protein leads to 
enhanced affinities for substrates and reduced affinities for products can also shown 
theoretically. Consider a linear metabolic pathway for which we aim to maximise 
the steady-state pathway-flux per unit invested protein. At steady state, all enzymes 
carry the same flux, , and the total enzyme contraction equals 

. Since maximisation of  is the same as minimisation of , we 

obtain, 

J = v1 = v2 = . . . = vr

eT =
r

∑
i=1

ei J/eT eT /J
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    . 

We already derived that . Thus, evolution pushes all 

saturation functions to high values, maximally to 1, which means to high affinities 
for substrates and low affinities for products. We note that this argument applies for 
metabolic networks with a single degree of freedom in its fluxes (so we can equate 

overall steady-state flux  with each individual enzyme flux ). Such networks are 
called elementary flux modes (EFMs) [82-84], and we return to them later as they 
have a special role to play in optimal metabolic states.  

Pushing enzymes to substrate saturation might not always be possible due to a 
thermodynamic constraint on the values of the kinetic parameters of an enzyme, 
known as the Haldane relationship. A perspective on the optimisation of activities 
of single enzymes, given the Haldane constraint, can be found in Cornish-Bowden 
[85].  

Protein synthesis, ribosomes and growth rate 
At balanced growth, the concentration  of any protein  in a cell is established by 
the balance between its rates of synthesis, degradation and dilution by (volume) 
growth, 

    . 

The factor  specifies the fraction of the total translation rate devoted to metabolic 

protein ,  equals the number of amino acids in this protein,   is the catalytic rate 

constant of the ribosome (unit: number of amino acids per ribosome per minute),  

its concentration and  its saturation function.  

The concentration of the ribosomes is set by the same balance,  

    . 

min
e ∑

i

ei

J
= min

e ∑
i

ei

vi
= min

e ∑
i

1
k+

cat,i fi(m(e))

−k−
cat,i /k+

cat,i < fi(m(e)) < 1

J j

pi i

dpi

dt
= αi

kr

Ni
fr(m)r − (μ + kd,i)pi = 0

αi

i Ni kr

r
fr(m)

dr
dt

= (αr
kr

Nr
fr(m) − μ)r = 0
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(We omitted degradation, because ribosomes are stable proteins.) This last equation 
indicates that the growth rate of a cell equals the synthesis rate of ribosomes per 
unit ribosome, .  

Thus, we obtain the following relation between the concentration of a protein and 
the ribosome, 

   , 

(where the proportionality is valid for stable proteins, i.e., most metabolic proteins.) 
This relation is remarkable, and leads to the insight that, at balanced growth, the 
ratio of protein and ribosome concentration is proportional to the ratio of the 
number of ribosomes respectively allocated to their synthesis. Thus, ribosome 
profiling results should agree with proteomics experiments at balanced growth. We 
are not aware of an experimental confirmation of this statement.  

The total protein concentration in a cell equals  and is determined by 

the balance  

  . 

This equation leads to a relationship between the ribosomal protein fraction, the 

growth rate and the saturation function of ribosome , 

    . 

This last equation is a very useful one, which we will exploit several times 
throughout the remaining text. It also allows for an interesting calculation of the 
growth rate of a cell. We can calculate the maximal growth rate when the cell would 
only consist of ribosomes and all ribosomes are saturated with their substrates. 
Then  which gives rise to a generation time of about 5 min when  

equals 17 aa/s and the amino acid content of a ribosome is 7536 (bionumbers 
website).  

μ = αrkr fr(m)/Nr

pi = r
αikr /Ni fr(m)

αrkr /Nr fr(m) + kd,i
⇒

pi

r
∝

αi

αr

pT = r + ∑
i

pi

dpT

dt
= (∑

i

αi

Ni
+

αr

Nr ) kr fr(m)r − μpT = k′ r fr(m)r − μpT = 0

fr(m)
r
pT

=
μ

k′ r fr(m)
⇒ μ =

k′ r fr(m)r
pT

μ theor
max = kr /Nr kr
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T h e d e r i v e d r e l a t i o n  s h o w s — p e r h a p s s o m e w h a t 

counterintuitively — that increasing all enzymes by the factor  such that  

and  does not change the growth rate. Only changes in the relative protein 
concentrations can do that, via reallocation of limited resources; they influence the 

steady-state metabolite concentrations (entries of ),  and all other enzyme 

concentrations that sum to .  

That growth rate is proportional to protein synthesis, i.e., , does not 

mean that the ribosome is the most important enzyme in a cell. It is not the “rate-
limiting step”, as one could (erroneously) conclude. Since, maximisation of , 
i.e., maximisation of the saturation of ribosomes with its loaded-tRNA substrates, 
requires high concentrations of those substrates, their synthesis rates need to be 
high enough to replenish those substrates that are binding and converted by the 
ribosomes. Thus, maximisation requires high enzyme concentrations for 
sufficient amino-acid production [28]. Keeping high concentrations of substrates 
also requires that they diffuse fast enough to prevent concentration concentration. 
It has been suggested that diffusion of loaded-tRNA might limit growth rate in E. 
coli; thus, keeping the concentrations high when the ribosome is very active might 

be limited by substrate-diffusion rates [50]. Since  correspond to the fraction 
of ribosomes that are elongation, its evolutionary maximisation makes sense. 

Experimental data indicates that  

Growth rate also increases when the catalytic rate constant, i.e. , of the ribosome 
increases. Ehrenberg and Kurland have, however, suggested that an upper bound to 
this value likely exists [55]; As increasing it reduces the effectiveness of kinetic 
proofreading.  Kinetic proofreading prevents incorporation of the wrong amino acid 
into the developing protein. It works by pausing the incorporation of the amino acid 
onto the growing peptide chain, such that the wrong amino-acid-tRNA pair typically 
dissociates from the ribosome, before the ribosome attached it. (Assuming that the 
ribosome has a higher affinity for the correct pair that, therefore, spends (on 
average) a longer time on the ribosome.) The allowable number of errors in proteins 
then sets a bound to . Thus, understanding ribosome optimisation is a complex 
problem.  

μ = k′ r fr(m)r /pT

λ r → λr
pT → λpT

m r
pT − r

μ ∝ k′ r fr(m)r

fr(m)

fr(m)

fr(m)

fr(m) ≈ 0.85.

kr

kr
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The ribosomal fraction of E. coli in  RNA per  protein, a measure proportional 

to , as function of growth rate is shown in Figure 5. It is not a linear relation 
between the total ribosomal protein content and the growth rate of the cell as was 
derived above ( ). It rather obeys, 

     , 

with  and  as phenomenological constants for now. This relation has been 
explained in two ways.  

One view is that all ribosomes are active (hence ), and that the saturation 

degree, , of the ribosome is growth-rate dependent. Combining the above two 
expressions, we find 

     , 

which argues against the control objective of the ribosome system described above, 
as it makes the saturation degree of the ribosome dependent on growth rate, and 

only at high growth ( ) does the saturation become growth rate 

independent and equal to .   

Another view is that a fixed pool of inactive ribosomes exists, with concentration 

 , such that the concentration  is in fact the pool of active enzymes, and 

. Then, 

   .  3

In this last model,  should be a constant for the relation between  versus  to 

be linear, and it also defines the constants  and  as the saturation of the ribosome 
and the fraction of inactive ribosomes, respectively.  
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 Note that now  such that the now growth rate equals 3

 and is no longer equal to the ribosome synthesis rate per ribosome.
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We favour the last view, for a reason that is still speculative. The determination of 
 is done by measurement of the (stable) rRNA and total protein. It is seems 

very plausible to us that free rRNAs and non-translating, partially assembled 
ribosomes exist due to the thermodynamic equilibrium of the association and 
dissociation events involved in ribosome assembly. The sum of the partially-

assembled concentrations is then equal to , which may be large since the 
assembled ribosome complex exists of many subunits such that even more partially-
assembled complexes exist. (This argument may also be only partially correct, given 
the fact that during a nutrient upshift almost instantaneous translation occurs, as if 
idle, unused, fully-assembled ribosomes exists.) 

Overcapacity of ribosomes at slow growth rate have been reported for E. coli [86] 
and S. cerevisiae [81], indicating that having a reserve of idle ribosomes, when 
nutrient are scarce, provides a fitness benefit when nutrients become suddenly 
available. This, however, introduces the question why those idle ribosomes do not 
reduce the growth rate when nutrients are scarce. If that would be the case, then 
prolonged growth at nutrient limitation would lead to a reallocation of biosynthetic 
resources to other now-needed proteins at the expense of the idle ribosomes. So, 
either those microorganisms have evolved under dynamic nutrient conditions or 
idle ribosomes at nutrient limitation do not reduce growth rate. We think that the 
latter is the case — perhaps, paradoxically so. Below we will show that growth rate is 
limited at nutrient limitation by the protein-storage capacity of membranes, in 
particular of nutrient-uptake proteins. And, that under those circumstances, the 
cytolic protein storage is exploited below its maximum. Thus, then space is free in 
the cytosol for now-unneeded ribosomes. That in turn poses the question why 
having unneeded proteins in a non-limited cellular compartment does not reduce 
growth rate. For that we do not have a good answer, we provide one below on the 
basis of an argument made by Dill et al. [87] that the protein density of 
microorganisms is perhaps optimal for maximal reaction rates. That would explain 
why microorganisms keep a constant protein density across conditions, regardless 
of whether expressed proteins are needed [86, 88]. 
  

rT /pT

rU
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In any case, the following definition of growth rate is independent of the nature of 
the inactive ribosomal protein fraction: 

   . 

This is the definition we used above already.  

III. Fitness and microbial physiology 
From proteins to metabolic pathways 
Obtaining an understanding of growth-rate-maximising protein expression 
addresses only part of the challenge. Proteins function concertedly in networks, and 
it is those networks that ultimately set cellular growth rate. They are responsible for 
the conversion of all nutrients into all the cell material required for growth, 
including the relief of stresses acting on growth processes in the cell. One goal is, 
therefore, to understand why a cell chooses for the network it expresses and not 
another one. Microbial physiology is therefore at its heart a systems biology 
problem [89, 90]. 

Remarkably, many evolutionarily distinct microorganisms show the same 
qualitative metabolic behaviour as function of nutrient availability, and hence, 
growth rate [74]. First, the vast majority shows catabolite repression and diauxie 
[91], i.e., they often favour sequential metabolism of substrates over co-
consumption [74, 92-94]. Second, they shift from a high yield to a low yield 
metabolism as function of growth rate and/or carbon excess (Figure 6). For some 
microorganisms, such as the best studied E. coli and S. cerevisiae, this means that 
respiratory metabolism occurs at low growth rates and increases in rate up to a 
critical growth rate, whereafter metabolism shifts to a respirofermentative or 
“overflow” mode that progressively shows a higher rate of fermentation or overflow-
product formation [95]. In other words, microorganisms spoil nutrients at high 
growth rate.  

What is the evolutionary benefit of recurrent physiological behaviours? It turns out 
that constraints acting on protein expression and growth-rate maximisation can 
explain these common findings [52, 96]. 

μ =
kr fr(m)r

pT
=

total translation rate
total cellular protein

=
Jp(m)

pT
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Stoichiometric models of whole-cell metabolism 
Shortly after metabolic pathways were experimentally determined in the 1950 and 
1960’s, stoichiometric modelling of metabolism was started with the work of 
Umbarger [97] and Stouthamer [98]. Central to those maps is the concept of 
reactant stoichiometry, how many moles of each of the substrates are needed to 
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Figure 6. Illustration of common microbial physiology: overflow 
metabolism occurs after a critical growth rate and linear flux-growth 
rate relations. Values of the glucose (A) and oxygen (B) uptake fluxes in glucose-limited 

chemostats from different studies (Postma et al., 1989, Holms, 1996, Van Hoek et al., 1998, 
Nanchen et al., 2006, Fonseca et al., 2007). The figures shows on the right are examples, 
shown also in the left figure.



make each of the products in certain molar amounts [8]. These stoichiometric 
coefficients follow from knowing the reactants, their elemental composition, and 
balancing the number of each element right and left of the reaction arrow. When all 
reactants of all enzymes have been identified, the reaction network is known. 

At balanced growth, all the concentrations are constant and therefore all the net 
synthesis and degradation of all molecules balance. Under this condition, pathway 
maps can be used to figure out, for instance, how much ATP, NAD(P)H, and central 
precursors of metabolism were required to make each amino acid, nucleic acid and 
lipid at steady state [3]. This what Umbarger and Stouthamer did. Then, from the 
rate of the growth and the compositions of cells in terms of those monomers they 
could calculate their synthesis rates. Given a particular set of nutrients, they could 
determine how many mole of those nutrients are required to synthesize one mole of 
ATP, NAD(P)H and precursors [3]. Knowing these demand rates, the uptake of 
nutrients can be calculated. These models are so-called structured models [99].  
(Unstructured models also exist. They are very simple, but lack detail, and just give 
the overall conversion stoichiometry of nutrients into cells and byproducts [100].)  

The most detailed structured model considers the stoichiometry of all metabolic 
reactions encoded on an organism’s genome [101]. These are called genome-scale 
stoichiometric models, pioneered by Bernard Palsson and colleagues [102-104]. 
They are analysed using methods from linear programming, pioneered by Fell and 
Small [105]. Those methods are nowadays better know as flux balance analysis [37]. 
Recently those methods have been extended to deal with resource-allocation based 
optimisations [88, 106-108]. 

Protein-expression constraints  
Since the kinetic parameters of enzymes can only change through mutations, cells 
adapt to new conditions to optimise their growth rate via changes in protein 
expression. That occurs, in addition, to metabolic regulation of proteins, via post-
translational modifications and (allosteric) feedback regulation [74]. A higher 
growth rate requires for many reactions higher rates and, therefore, also higher 
enzyme concentrations. A cell then eventually runs into bounds of allowable protein 
concentrations, since cells have a finite capacity to store proteins. The growth rate it 
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then attains is maximal and limited by at least one of those bounds. (This happens 
Page  of 36 73

Figure 7. Illustration of the use of cost vectors of EFMs for 1 unit flux. A 
scenario of with two protein constraints is considered, one for the membrane and another for the 
cytosol compartment. We also limit the case to two possible EFMs (yellow and green) and their 
mixture (dotted lines). We always optimise the EFMs and their mixture independently, which 
leads to protein costs vectors, corresponding to usage fractions of the two pools required for 1 unit 
objective flux. If all EFM cost vectors lie above the diagonal (Figure 7A; or below, not shown) then 
one wins. This is the one with the lowest costs, marked 1 on the diagonal. The green EFM is 
optimal, it requires the least resources for 1 unit flux. Since it lies above the diagonal, it exhausts 
only one (the membrane) pool, and leaves the other (cytosolic) pool largely unused. Conversely, 
when both EFMs lie below the diagonal only the other (cytosolic) constraint is limiting (not 
shown). One of the EFMs can also win if both lie on opposite sides of the diagonal. For instance, in 
Figure 7B the yellow EFM wins, as it also beats a mixture of EFMs. Again only the membrane 
constraint is limiting. Both constraints can become limiting too (Figure 7C and 7D). Then one 
unlikely case exists, when one of the EFMs lies on the diagonal and wins (Figure 7C). The other is 
that the mixtures win (Figure 7D).
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regardless of the occurrence of post-translational or feedback regulations.) 

These bounds may correspond to the maximal protein solvent capacities of the 
various protein-containing compartment of a microbial cell. For bacteria these are 
the periplasm, plasma membranes, and cytoplasm, while for eukaryotic 
microorganisms organelles are also relevant.  

It turns out that the interiors [49] and membranes [48] of cells are extremely 
crowded with proteins. About 20% of the interior of cells is occupied by proteins 
(with 58% being the theoretical maximum) and they occupy 30-50% of the 
membrane. This means that protein-to-protein distances are of the order of the 
diameter of a protein (~5 nm), both in a cell’s interiors and in membranes. Cells are 
thus extremely packed with protein. Making more proteins of one type will 
therefore influence the space available for others. In fact, increasing the protein 
concentration of cells, by reducing the water content by increasing the osmotic 
pressure, reduces growth rate [109]. This suggests that diffusional speeds of 
proteins and large molecular complexes can limit growth rate [50]. 

To summarise, each protein-containing compartment in a cell has a limited protein 
storing capacity; A growth rate increase requires increased rates of biosynthetic 
reactions, and those rates are proportional to the concentration of their catalysing 
enzyme. Thus, growth rate can increase until one or more protein containing 
compartments is filled with needed protein. We will show below that not all 
protein-containing compartments are limiting growth simultaneously. Which ones 
do depends on conditions, and the resulting limiting constraints explain changes in 
metabolism. 

Elementary flux modes maximise metabolic flux per unit 
protein 
Again we view growth rate as the flux of protein synthesis per unit protein. Its 
optimisation requires the optimal allocation of a finite amount of protein over all 
the metabolic reactions required to make proteins. Equivalently, we can ask what 
the amount of protein is that is minimally required to obtain 1 unit of protein 
synthesis flux.  
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This is a complicated problem. To see this, imagine a linear metabolic pathway and 
suppose we aim to find the amount of protein that we should invest in it in order to 
reach 1 unit of pathway flux. All enzyme rates are now equal to 

. Each rate equals . The required enzyme 

concentrations cannot be calculated without knowing the steady-state metabolite 
concentrations, entries of . These, in turn, depend on the concentrations of the 
enzymes, and appear nonlinearly in the saturation functions. Thus, this a nonlinear 
optimisation problem; these are usually difficult to solve for larger systems.  

Since we did not want to solve this for a linear metabolic pathway, but for the 
general case, to identify the general characteristics of optimal metabolic networks, 
we initially feared the worst. To our surprise, it turned out that this problem is 
solvable. We [76], and Mueller et al. [110], found that elementary flux modes 
(EFMs) are the metabolic networks that maximise the flux given a finite of amount 
of enzyme that can be allocated to the enzymes in the metabolic network. Also for 
nearly all enzyme kinetic equation this optimisation problem is convex, meaning 

that the landscape of the  as function of all the (bounded) enzyme 
concentrations has only a single peak [25, 111]. That was an unexpected finding too. 

EFMs are minimal pathways through a reaction network [82-84]. All flux directions 
in an EFM are in accordance with thermodynamics. The EFM’s network is minimal, 
in the sense that no reaction can be removed without violating the steady-state 
requirement. EFMs (therefore) have only one degree of freedom, meaning that if 
you know one flux value, you can determine them for all reactions in the EFM. 
Therefore, an EFM has fixed yields of its products given its substrates, which 
corresponds to fixed flux ratios. Finally, all possible steady-state flux distributions 
are expressible in terms of weighted sums of flux distributions of single EFMs. 
Thus, the smallest units of physiological activities of a cell are its EFMs. Some of 
these are growth supporting, i.e., they produce new cells from all the required 
nutrients. 

The mathematical proof that EFMs are the constrained flux optimisers can be found 
in the Appendix [76]. (Mueller et al. came to the same conclusion, using a 

1 = v1 = v2 = . . . = vr vi = kiei fi(m) = 1

m

j/eT
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completely different approach [110].) The intuitive explanation is the following: 
each metabolic strategy is a weighted sum of EFMs. For each EFM, we can compute 
the costs of reaching a flux of 1 unit. One EFM will be cheapest; it is very unlikely 
that two EFMs will have exactly the same costs. If one EFM is the cheapest, it will 
be the best strategy, no mix of EFMs will do better. This result is completely general 
and holds for arbitrary networks (not linear, it can have branches, cycles, etc.), with 
enzyme kinetics ( ) that can include allosteric feedback regulation. 

Whether a flux distribution derives from an EFM can be tested by computing the 
rank of the associated stoichiometric matrix, which equals the number of reactions 
minus  in the case of EFMs [82]. Moreover, due to its fixed yield, the net reaction 
stoichiometry of an EFM is constant too. Therefore, the substrates of the EFM and 
the products are always consumed and produced in the same proportions. 
Consequently, if a single EFM is used across conditions, at varying rates, the 
relation between each of these rates and growth rate are linear.  We will come back 
to that later, after we have dealt with the situation where more than one proteome 
constraint is active. 

A maximal bound on the number of used EFMs in the optimum 
So far, we have limited ourselves to the situation that a single enzyme constraint 
exists that limits the allocation of enzyme concentrations over metabolic reactions. 
In that situation, the optimal protein investment is the usage of a single EFM. But 
what happens if two, or more, constraints exist that each limit protein 
concentrations? For example, when one limits the protein concentrations in the 
membrane, another in the cytosol and a third in the periplasm? Will all 
compartments always be filled with protein when growth rate is maximised? How 
many EFMs will generally be used? Recently, we have solved this problem [112].  

We illustrate the solution with a case that can be understood visually (Figure 7). The 
general case can be found in de Groot et al. [112]. We consider two protein-
concentration constraints, one for the membrane and another for the cytosolic 
compartment. For each EFM we compute the minimal protein requirement for 1 
unit of flux. This leads to protein-cost vectors, whose coordinates correspond to the 
usage fractions of the two protein pools. These are the outcomes of nonlinear 

vi = kiei fi(m)

1
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optimisations given the enzymes kinetics of all the reactions in the EFM and thus 
employ a steady-state kinetic model — not a stoichiometric model. One can see, that 
depending on the conditions, one or two EFMs maximise total flux, but never more 
than two.  

If all EFM cost vectors lie above or below the diagonal, only one constraint is 
limiting, and only one EFM can be optimal. As conditions change (for example, the 
concentrations of nutrients increase), the length and direction of the cost vectors 
change, and another constraint may become limiting as soon as the diagonal is 
crossed by one or more EFMs. Then, a combination of two EFMs may make optimal 
use of the available, limiting, resources and deplete both protein pools.  

In general, the number of EFMs that can carry flux in the optimum is bounded by 
the number of constraints on protein pools that actively limit the growth rate; when 
the size of those pools would increase, then the growth rate would also increase. 

When nutrient conditions change, the cost vectors of EFMs change along. This is 
because the optimal activity of the EFM depends on the nutrient concentration. For 
each new concentration, the EFM optimisations have to be repeated, the protein-
costs change and the picture changes. Thus in response to a changing condition, a 
metabolic network can show a qualitative change in behaviour, from the use of a 
single EFM to a mixture of two, or from two to three, etc. We think that this 
mechanism underlies the shift from respiratory to respirofermentative growth. 

To summarise, we obtained the following insight: Microorganisms are continuously 
selected for optimal expression and usage of proteins to grow fast enough and to 
prevent being outcompeted. This means that they inevitably run into protein 
constraints that limit growth rate, since rates of enzymes are proportional to their 
concentrations, but not all constraints are ‘hit’ at once. When conditions change, 
other constraints may become limiting (in addition) and cause a shift in the 
qualitative behaviour of metabolism, e.g., from pure respiratory to mixed 
respirofermentative growth. The number of mixed EFMs will nonetheless remain 
small, because the number or protein concentrations are small too; we cannot think 
of more than a handful. Note that all this assumes optimal protein expression 
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leading to maximisation of growth rate under constant conditions. Let us now turn 
to the evidence that cells indeed behave in this way. 

Experimental evidence that only a few EFMs are used 
EFMs have only a single independent flux, so that all the flux ratios for an EFM are 
constant. Therefore, a change of one flux in the EFM is accompanied by a 
proportional change in all the other fluxes. This is characteristic of usage of a single 
EFM. Figure 8 shows some of the nutrient-uptake and byproduct-formation fluxes 
of a glucose-limited chemostat culture of S. cerevisiae as function of the dilution 
rate [95].  

Below the critical dilution rate, at , only respiratory growth occurs (no by-
products are formed and oxygen is consumed). The linear fits indicate a 
proportional relationship between the fluxes and the growth rate, indicating the 
activity of a single EFM. We confirmed this computationally, using FBA, by fixing 
the growth rate and minimisation the glucose-uptake flux, and determining the 
rank of the used metabolic network (P. Grigaitis, Teusink, Bruggeman, 
unpublished; this optimisation corresponds to a linear program with a single 
constraint that always has a single EFM as its solution.) Famili et al. [113] also 
confirmed that FBA results agree with the data, providing additional evidence for 
the usage of a single EFM.  

An interesting property of EFMs is that the maximal yield of any metabolic network 
is always achieved by one of its EFMs. Thus, growth-rate maximisation in the 
presence of one nutrient-uptake flux constraint with FBA also maximises the 
biomass yield on that nutrient. Growth rate and yield do not necessarily trade-off: it 
depends on the condition-dependent active constraints. This suggests that below 
the critical growth rate in the chemostat cells maximise growth rate, as they always 
do, but only hit a single constraint, with an EFM is the optimal solution. The EFM 
that maximises growth rate now also has the maximal biomass yield on glucose, 
because cells are now limited by the glucose-uptake capacity (membrane is full) and 
cannot afford to spoil. 

0.28 hr−1
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When the dilution rate rises, the glucose concentration rises, growth rate increases 
until the critical dilution rate occurs. Then we expect that a new constraint becomes 
active, and that now two EFMs, respiration and fermentation in the case of yeast, 
are being used together. Which constraint becomes active is likely to be condition 
specific, and many options have been proposed [114], but the underlying extremum 
principle, based on constrained growth-rate optimisation, is always the same. Along 
these lines is also how Basan et al. [115] rationalised the onset of acetate overflow 
metabolism by E. coli as function of its growth rate. They found strong evidence 
that the cytosolic protein pool becomes limiting when acetate formation starts. By 
over-expressing an unneeded enzyme in the cytosol they could change the critical 
dilution rate.  

The data of Van Hoek et al. [95] also show that, beyond the critical dilution rate, the 
respiratory fluxes decrease, while the fermentation flux increases, in a linear 
fashion. Fermentative growth has a lower yield and hence the glucose uptake rate 
increases. In this way, a higher-yield EFM (respiration) is exchanged for a lower-
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yield EFM. In quantitative terms, the flux distributions of the two EFMs are mixed 
with a coefficient  that is growth-rate dependent, such that 

    ,  ( )  

with  as the entire metabolic flux distribution of the cell. (Note that the 
ribosome concentration increases linearly with growth rate too (Figure 5).) Fitting 
to the data of Van Hoek et al. shows that . At the critical dilution rate, 

 and . At  the cellular growth would be entirely 

fermentative; this is, however, above the maximal growth rate ( ). Using 
FBA, it can be shown that the fluxes value after the critical dilution rate can be 
predicted using a single new flux constraint (P. Grigaitis, Teusink, Bruggeman, 
unpublished).  

Basan et al. [115] found a similar linearity in E. coli in the overflow regime. They 
showed with proteomics that flux changes coincided with protein expression 
changes. They suggested an even allocation of protein, i.e., if the respiratory system 
reduces in protein content by 1% then this amount of protein is allocated to the 
ribosome and the overflow EFM. In the overflow EFM, the increased protein 
resource would then be divided in proportion to the current protein concentrations, 
so that all protein ratios remain the same. Since the relative fluxes were already the 

same, the saturation degrees (the ’s) of all the protein in the fermentative EFM 
remain the same. This is still speculative at this moment, and more experimental 
work on protein and metabolite levels is needed, but if it is true then metabolic 
regulation directly follows from growth-rate maximisation principles. We think that 
is a worthwhile endeavour.   

The trade off between growth and stress demands 
The fitness effect of unneeded protein expression, which we derived earlier, 
indicates that preparatory protein expression reduces instantaneous fitness. It 
reduces the growth rate, because it occurs at the expense of growth-promoting 
protein expression. The derivation above, however, only applies if the preparatory 
protein occupied a protein pool that is limiting growth rate. It does not say anything 
about preparatory protein expression in pools that are not limiting. Before we 
consider preparatory protein expression under such conditions, we have to 
convince ourselves that preparatory protein expression is not always growth-rate 

α(μ)
JRα(μ) + (1 − α(μ))JF = J(μ) 0 ≤ α(μ) ≤ 1

J(μ)

α(μ) = 1.9μ
α(μc) = 1 JR = J(μc) μ = 0.53 hr−1

0.42 hr−1

f
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reducing. It does require resources after all. Isn’t it better to leave non-limiting 
protein compartments partially empty? Thus, why would a cell fill the cytosol with 
protein if it is only membrane limited?  

Dill et al. [51] may have provided an answer: They showed that the protein density 
of a cell (~20% volume fraction [44]) is remarkably close to the optimal volume 
fraction of macromolecules that maximises biosynthetic rates. That such an 
optimum must exist follows from the insight that at low-volume fractions 
macromolecule collision rates are limited by their collision time, while, at high 
volume-fractions, protein crowding increases viscosity, decreasing the diffusion 
coefficient of proteins. Thus at intermediate protein concentrations rates be higher. 
Thus, perhaps, under- and overfilling of compartments with proteins reduces 
fitness, regardless of whether those proteins are needed or not. The fact is that 
experimental data show that protein content of cells (g per g dry weight) is very 
similar across conditions and microorganisms. 

Given the experimental evidence that cells do fill protein compartments, then under 
which circumstances do we expect preparatory protein expression? We have seen 
that at low growth rates, under nutrient limitation, the membrane is the likely only 
limiting constraint. This implies that the entire capacity of the cytosol to store 
growth-promoting proteins is not required in the optimal state. O’Brien and Palsson 
[116] came to the same conclusion using a detailed model of metabolism and 
expression of E. coli.  They also found that below the critical dilution in the 4

chemostat, before acetate is made, the cell is nutrient limited and that the cytosol 
has excess protein-storage capacity. After the critical growth rate, the cytosolic 
protein compartment has no longer excess capacity and is completely filled with 
needed protein. O’Brien and Palsson’s computations are therefore fully in line with 
our theory. 

 In this model all the cellular macromolecules are made out of their building blocks, incl. mRNAs, 4

DNA and proteins, and mRNA needs to be made so that translation can proceed. Classical 
genome-scale stoichiometric models do not do this, they only consider metabolism and the 
formation of macromolecules is not made explicit. In the latter, simpler, case, metabolic fluxes of 
enzymes are not limited by their concentration, enzyme concentrations are not limited by their 
mRNA concentration, and enzyme concentrations are not set by the balance between their rates 
of synthesis, dilution by growth and degradation.
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A direct consequence is, that at low growth rates caused by nutrient limitations, 
proteins can be made in the cytosol that have no impact on the current growth rate 
by forcing growth-promoting, needed, cytosolic proteins to reduce in concentration. 
If that is indeed so, then an increase in geometric fitness can be achieved by 
expressing anticipatory proteins (proteins that are currently not used) but would 
prepare the cell for future environments. Experiments of Egli’s lab [117, 118] 
confirmed this: E. coli was found to be more stress tolerant and capable of 
instantaneous growth on alternative carbon sources when harvested at a dilution 
rate below its critical value than above. This also agrees with our understanding of 
ppGpp, which increases with decreasing growth rates, activating alternative stress-
related sigma factors, priming the cell for future stressful conditions [78]. In 
addition, catabolite repression is relieved when growth rate reduces, increasing the 
(leaky) expression rate of alternative carbon utilisation systems [117]. Thus, 
perhaps, growth rate does not always trade-off with stress [119].  

Thus, the emerging picture is that, as growth rate increases, cellular protein 
compartments are progressively filled with needed proteins, reducing preparatory 
protein expression. It may even explain the need for phenotypic diversification, 
using stochastic mechanisms, leading to persister formation, for example, at high 
growth rate. Although circumstantial evidence exists, many aspects need to be more 
firmly established experimentally. 

The intrinsic nonlinearity of cellular self-fabrication  
Most genome-scale models of metabolism and growth circumvent the heart of the 
matter. They fail to truly capture a defining essence of cell growth, namely that a 
cell uses its own molecules to synthesise these same molecules and double them in 
number, from its birth to its division. It has to choose the right molecules, the set 
that can make itself from the available nutrients. Natural selection forces cells to 
choose components that run this process of self-fabrication at the highest possible 
rate. This means that growth rate depends on the identity and concentrations of all 
those components, as these determine reaction rates.  

Classical analysis of genome-scale models uses flux balance analysis, linear 
programs, in which the flux values are the unknowns [37]. Linear (in)equality 
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relations between fluxes are given as constraints, corresponding to steady-state 
mass balances and flux bounds. Then an objective function, also linear in the fluxes, 
is optimised. Linear equations are solved and concentrations of molecules do not 
play any role. Consequently, the fact that an enzyme with a certain concentration 
catalyses its reaction at a certain rate and, hereby, indirectly contributes to its own 
synthesis, to balance its dilution due to cell-volume growth, is not considered. Thus, 
by not focusing on concentrations the essence of self-fabrication is missing. The ME 
model by O’Brien and Palsson [116] was the next step in the direction of self-
fabrication models. Its optimisation problem is nonlinear in the growth rate of the 
microorganism. It considers protein concentrations, but not metabolite 
concentrations. As a consequence, the saturation functions of enzymes (the 's) are 
constants. ME models are the simplest variants of models of self-fabrication [26]. 

To truly model self-fabrication, we need to consider all cellular machinery, so 
including all the kinetics of all the processes in a cell, and the concentrations of all 
the molecules it contains. We have recently proposed such a general formalism 
[26]. In it, the ribosome makes itself and all the enzymes that are required to supply 
the substrates for protein synthesis. While this happens, the rates of metabolic 
reactions and translation increases, but the volume of the cell increases too, causing 
dilution, and these rates balance at balanced growth. To see why this problem is 
nonlinear in the growth rate, we have added an example to the Appendix. 

f
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Elementary growth modes 
We have found that even in the full-blown nonlinear case, i.e., with enzyme kinetics, 
dilution by growth of all the components and the ribosome making all the enzymes 
and itself, one can still define networks that are minimally required for growth [26]. 
They are minimal self-replicating metabolic systems, called elementary growth 
modes (EGMs), that allow self-fabrication of all their components at a fixed steady-
state rate from nutrients. They truly describe balanced growth in all biochemical 
detail. EFMs refer to metabolic networks, in the absence of volume dilution of 
metabolites; EGMs refer to metabolic networks catalysed by proteins synthesised by 
ribosomes, and all these components are diluted by growth. Thus, metabolic 
networks are subnetworks of EGMs.  

Some of the results obtained with EFMs turn out to be valid for EGMs too [26]. We 
could show that the number of EGMs is maximally equal to the number of active 
constraints on protein pools. With only one active constraint (which is the condition 
that cellular volume is directly tied to cellular contents), a single EGM is the growth 
rate maximiser. A remarkable insight is that if the amino-acid composition of all 
proteins in a cell is constant across conditions, the metabolic subnetwork of any 
EGM is a corresponding EFM. Experimental evidence supports this constancy of 
amino acid composition [26]. To summarise, the vast majority of the 
interpretations of experiments discussed above are preserved when the EGM 
framework is used. EGMs are the most general molecular descriptions of the states 
underlying balanced growth of microorganisms. Therefore, any general balanced-
growth theory should start from them. This is the challenge ahead of us in the 
coming years. 

IV. Microbial optimality: fact or fiction? 
A perspective on microorganisms from the allocation of finite biosynthetic 
resources has proven to be extremely fruitful in the last decade. Without this 
perspective it is hard to take a systemic perspective on cells and realise how all 
molecules in it form a functional entity.  

The resource allocation perspective is in itself not a hypothesis about the optimality 
of microorganisms. Optimality only comes into play when one starts to wonder 

Page  of 47 73



about why microorganisms express certain proteins and networks and not others. 
Then it is very natural to think about natural selection and evolution leading to 
microorganisms that allocate resource optimally to maximise their fitness. Fitness 
then equals growth rate, in presence and absence of stresses. It thus also 
incorporates survival investments to avoid a negative growth rate, i.e., death. 
(Fitness in dynamic conditions can then be equated in terms of that growth rate, 
like we did above.)  

Without the optimality hypothesis, it is hard to hypothesise how a cell should direct 
its protein economy, in which proteins it should invest. For us, only when we think 
about maximisation of the return of those investments, i.e., making offspring the 
fastest, do hypotheses emerge about protein and network expression.  

We started the growth-rate maximisation viewpoint as a null hypothesis, a starting 
point for the design of experiments and interpretation of the microbial physiology 
literature. What has been mind-boggling is how many puzzle pieces have fallen into 
place in the last decade of research. So much makes sense now, that we start 
thinking that a general optimisation-based theory about microorganisms can really 
be developed. The next step is to continue to quantitatively test the theory against 
experiments, preferentially by multiple labs using highly standardised protocols. 
We also need to improve the theory, in particular concerning the competition for 
protein involved in different types of constrained commodities. 

V. Closing remarks 
Richard Feynman once wrote (on his blackboard): “What I cannot create, I do not 
understand.”, referring to the fact that if he couldn’t write down a set of equations 
describing some phenomenon he did not understand that phenomenon. We hope 
that microbiology will reach this high standard too. It would give microbiologists a 
common language that would facilitate comparative microbiology and offer a 
method to come to grips with the enormous microbial biodiversity on our planet. It 
would also improve the communication of evolutionary biologists, microbiologists 
and biophysicists, leading to a more unified biology.  

Thus, is there a unity in microbiology? We certainly hope there is. 
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Appendix 

Derivation of Fisher’s theorem 
We define at time  the mean growth rate  of a population of  genetically 
different microorganisms as,  

     .   

Its rate of change of equals 

     . 

The probability of occurrence of genotype  is given by 

     , 

with  denoting the number of organisms with genotype  growing at rate , and, 
         

.  

This last equation shows that the abundance of a genotype that grows faster than 
average increases while that of a slower-than-average grower decreases. Finally, the 
rate of change in the mean growth rate equals, 

 , 

which is Fisher’s theorem [23], 

      (Fisher’s Theorem). 

This theorem indicates that variation in growth rate causes changes in the mean 
growth rate. 

t ⟨μ | t⟩ N

⟨μ | t⟩ =
N

∑
i=1

pi(t)μi

d
dt

⟨μ | t⟩ =
N
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μi
d
dt

pi(t)

i

pj(t) =
nj(t)

∑N
i=1 ni(t)

ni(t) i μi

d
dt

pj(t) =
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i=1 ni(t)
d
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nj(t) − nj(t)
d
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(∑N
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2 = pj(t)(μj − ⟨μ | t⟩)
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∑
i=1

μi pi(t)(μi − ⟨μ | t⟩) = ⟨μ2 | t⟩ − ⟨μ | t⟩2 = ⟨δ2μ | t⟩

d
dt

⟨μ | t⟩ = ⟨δ2μ | t⟩
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Derivation of properties of the average cell in an isogenic 
population 
A key aspect of the balanced growth theory is that it applies to the average cell in a 
population of cells that grows at a logarithmic growth rate. If the total number of 
cells equals  then its rate of change equals 

      . 

The number of cells at time  with age , defined as the time elapsed since birth, 
equals [30], 

, 

with: 
1.  the probability to have age  and  equals the probability density 

function for the cell age ,  

2.  is the number of daughter cells formed at  in the time period  

of length ,  

3. , 

4.  equals the probability that a cell has an age greater than , and thus a 

generation time greater than . Therefore,  is the probability density 
function for the generation time (or the interdivision time). 

The probability density function for the cell age (the “age distribution”) is hence 
given by 

    . (Cell-age Distribution) 

Since,  the growth rate can be solved from the following 

characteristic equation, 

    .  (Population growth rate) 

n
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dt
= μn(t)

t a
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∞

a
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∫
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∞
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∫
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∫
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∞
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Case of gamma distributed generation times 
Experimental generation-time distributions, ’s, are often well described by 
gamma distributions, 

    ,  

where  is the Gamma function and  and  are positive 

parameters. The mean generation time then equals  and the variance of 

the generation time . For this case, the growth rate of the population is 

given by 

     . 

Note that (by L'Hopital's Rule) 

     , 

which corresponds to the generation time definition for the population level 
description 

     . 

Thus, generation time, measured at the level of the population in a culture of 
isogenic cells, does not equal the mean generation time when measured at the level 
of single cells. This discrepancy has been shown to be in agreement with 
experimental data. 

We find that 

  ,  (Mean cell age) 

indicating that the average cell is almost at half its cell cycle.  

f (t)
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The balanced growth theory applies to the state of the average cell. To show that 
this leads to correct predictions, consider a population level model of a molecule X 
that is produced at a constant rate and is diluted only by growth. The rate of change 
of its concentration (in copy number per cell) then satisfies 

    , 

so that . Now we consider the single cell scenario. The number of 

molecules of X that a cell contains at time  equals, 

     , 

with  as the number of molecules at cell birth and the number of molecules 

produced since birth as . The latter quantity is distributed according to a 

Poisson distribution (can be derived from the chemical master equation), 
      (with mean ). 

Since  we know that ; thus, in the 

limit , 

 . 

This equals the population level model result. Thus, the population level model  

hence assumes that  or that  

       

This is therefore also one of the key assumptions in the balanced growth theory. 
According to measurements, the coefficient of variation of the generation time 
equals, 
      , 

indicating that the balanced growth theory can be an oversimplification.  

Constancy of the concentrations at balanced growth 
Since  we obtain for its rate of change, 

  , 
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and, since 

    ,  

during balanced growth, concentrations are constant:  

   . (Steady-state concentrations at Balanced Growth.) 

The rate of an enzyme is proportional to its concentration 
That the rate of an enzyme is proportional to its concentration follows from a 
universal property of enzyme mechanisms [5]. When we consider those in terms of  
their elementary reactions, i.e., of reactant association, dissociation and catalysis, 
using mass action kinetics, we observe that all those rates are proportional to the 
concentration of an enzyme species.  

Consider, for instance, the following mechanism of an enzyme that catalyses the 

reaction , in an ordered mechanism of 4 sequential elementary 
reactions, 

    . 

When we multiply all enzymes species with a factor  then the total enzyme 

concentration, , increases with this factor too. The rate of 
the enzyme will do so too because the rates of all four elementary reactions 

( , ,  and 

) then increase by a factor of  as well. Thus, the rate of the 

enzyme obeys  

  . (Proportionality of enzyme rate and concentration) 

It can be shown that this holds for all enzyme mechanisms, and is preserved if 
nonlinear saturation functions are derived using Quasi-Steady-State techniques  
[5]. 
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Derivation of the fitness potential equation 
Say we change by titration the concentration of protein  with concentration . The 
cell responds by changing the concentration of all other proteins. Thus, the change 
in the objective flux equals, 

     . 

We assume that the cell responded by maximising the flux given the new value of  

by optimally allocating  over all the remaining enzymes. This mean that we 

can define the following objective with a Lagrange multiplier , 

   . 

For all proteins, except i, optimality requires that, 

     ( for all j, except j=i). 

Thus, . From the flux summation theorem from metabolic 

control analysis, we know that, 

    . 

Using the last two relations, we obtain 

    

so that 

    

and, therefore, 

   . 

i pi

dJ =
∂J
∂pi

+ ∑
j≠i

∂J
∂pj

∂pj

∂pi
dpi

pi

pT − pi

λ

ℒ(p) = J(p) − λ ∑
j≠i

pj − (pT − pi)

∂ℒ
∂pj

=
∂J
∂pi

− λ = 0

∂ ln J
∂ ln pj

=
pj

J
∂J
∂pj

=
pj

J
λ

∑
j≠i

∂ ln J
∂ ln pj

= 1 −
∂ ln J
∂ ln pi

∑
j≠i

∂ ln J
∂ ln pj

=
λ
J ∑

j≠i

pj =
λ
J (pT − pi)

λ = J
1 − ∂ ln J

∂ ln pi

pT − pi

∂ ln J
∂ ln pj

= λ
pj

J
= pj

1 − ∂ ln J
∂ ln pi

pT − pi

Page  of 55 73



Now we substitute this last equation in the one we started with, 

    

Thus,  

    , with . 
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Derivation of unneeded protein cost equation from the fitness 
potential 
An unneeded enzyme has a  equal to zero. Thus its fitness potential equals 

    , 

so that 

    , 

and integrating  

     

gives  

  .   (Fitness cost of unneeded protein expression.) 

When the unneeded protein pool is a subset of the protein pool of the cell, e.g., the 
unneeded protein is cytosolic and the cell has other protein compartments like the 
periplasm and the membrane, then 

     ,  

  (Fitness cost of unneeded protein expression in a pool ) 

with  and  as the entire protein pool of the cell. Experiments indicate that 

.   
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Optimal steering of metabolic protein expression by a genetic 
circuit 
Our aim is to maximise the steady state flux through the simplest metabolic 
network (see [25] for the general case) and to illustrate how a genetic network can 
be found that is able to change enzyme concentrations such that the steady state 
flux is maximal with respect to the nutrient condition. The network we consider is 

      . 
Underlined metabolites indicates that their concentrations are kept constant. The 
enzyme kinetics of two enzymes is chosen to be 

    and .  

We aim to maximise the steady state flux , with  as the 

steady state concentration, under the constraint . The value of  is 

determined by  and . First, we express  in terms of , using  and 

, to yield . Next, we substitute this expression into . This 

is now the expression for the steady state flux  and only depends on , and is 

denoted . In the optimum, we require that 

     , 

with  as the flux maximising value of . A direct computation gives 

   . 

The optimal enzyme concentration now equals , and the optimal flux 

equals . We note that 

 

Although this is a complicated expression, it is nothing but an explicit function in 
terms of the substrate and product concentrations  and .  
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Next, we want to construct the optimal enzyme allocation, as a function of the 
metabolite X. The idea is that  is the optimal input-output relationship 

of the gene network with  as its input and  as its output. The problem is that 

the relation  we have derived still depends on s and p. In this example, 

we keep p fixed, but suppose that s may vary. The steady state  then varies with it. 

But we can invert the relation between  and ,  

      

we can substitute this into . The interpretation of this s is that is the value of s at 

which  is the optimal steady state value of x. If we now substitute this into , we 

have found an expression for  in terms of x. This is the input-output relation 

between  and , denoted by , that we require for finding the 

optimal genetic circuit.  

To implement this optimal allocation, we are going to model the genetic circuit 
really simply, using synthesis and dilution by growth, as 

      

and . This means that the steady state concentration of  equals 

. Thus, for optimal behaviour, we need to require . In 

other words, we have written down an explicit synthesis rate, as a function of the 
metabolite concentration x, with the property that if x is at steady state, the optimal 
synthesis rate for enzyme 2 is induced (and automatically also for enzyme 1). The 
surprising thing is that this function generally resembles a hyperbolic or a Hill-type 
relationship. Such a relationship is simple to achieve from the biochemical 
interactions between the sensor metabolite X, a transcription factor and a 
promoter. When you make such a model it is then easy to show that dynamics of the 
coupled system (metabolic pathway plus enzyme synthesis) track the environment 
in an optimal manner, without using the environment to control enzyme synthesis 
directly. 
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Even though the behaviour of the network is now optimal, mutations can still 
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Figure S1: Illustration of the proof that EFMs are the maximisers of 
linear programs with a single constraint. A. The flux planes that result from 
setting the mass balances to zero are shown. B. The intersection of the flux planes 
define a cone. C. The cone EFMs at is corners, the vectors. D. The intersection of 
the cone with the constraint plane. E. Movement of the objective plane through the 
cone until the objective plane leaves the cone. F. The optimal value lies on the 
border of the cone, on an EFM, on the constraint plane. 



increase the optimal growth rate. This can be understood by studying the enzyme 
kinetics once more. It shows that if  would be made smaller (reduced product 

inhibition) and  would be made higher (increased substrate saturation), the 
optimal flux would increase at the same optimal enzyme investment. To investigate 
this we define a new parameter  that we substitute into the optimal 

relationships  and  by eliminating , and then we take the 

limit of  to infinity. We obtain, 

  and . 

Thus, in this limit 

    .  

This recovers the linearity of the growth law of Maaloe [77] and Hwa [71], 

     , 

with  as a growth rate measure. The linearity of the growth law is perhaps 
due to optimisation of the amino-acid affinities of amino-acid synthesis and protein 
synthesis by the ribosome to reduce product inhibition and enhance ribosome 
saturation with substrate. 
 

Elementary flux modes maximise  
We start from an arbitrary network containing enzymes with arbitrary enzyme 
kinetics, and the objective is to minimise the amount of total enzyme concentration, 

, needed for 1 unit flux to a target reaction  in the network, which can be stated 
mathematically as [76] 

. 

Next, we reformulate the optimisation and remove the enzyme concentrations and 
obtain rates as optimisation variables, 
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Now we split all the reversible reactions into two (we hereby increase the number of 
columns of the stoichiometric matrix) and force both those new rates to have 
positive fluxes, by multiplying the corresponding entries in the stoichiometric 
matrix by -1, 

  . 

Next, we fix metabolite concentrations  and set , so 

  . 

The saturation functions have now become scalars, gone is the nonlinearity and we 

are in the realm of linear algebra. The (convex) set  is a cone 

(Figure S1A). It is spanned by its rays (vectors) that are in metabolic theory exactly 
the elementary flux mode (EFM) of the metabolic network [82, 84]. The cone is 

intersected with plane  (Figure S1B), defining the so-called feasible solution 
space (a polyhedron). A standard result in linear convex optimization is that the 
optimum must be one of the cornerpoints of this feasible solution space, and hence 
this is one of the spanning vectors of the cone. (Or in a very unlikely case a convex 
combination of them, when the objective plane is parallel to a facet of the cone.) 
This argument is valid for any choice of metabolite concentrations, so in particular, 
for any optimal choice of these. 

The flux through the network that leads to minimal protein usage must be 
contained in an EFM. 

A self-fabrication models leads to a nonlinear balanced-growth 
equation 
We consider the simplest self-fabricating model (see [26] for the general 
exposition), with one metabolite  that is taken up by enzyme  and used by the 

ribosome  to synthesise  and itself. We have the following rate of change 

equations for the concentrations, , , and , 

min
m,v {

r

∑
i=1

vi

ki fi(m)
vT = 1,N′ v′ = 0,v′ ≥ 0}

m αi = 1/fi(m)

min
v′ {

r

∑
i=1

αiv′ i vT = 1,N′ v′ = 0,v′ ≥ 0}

{N′ v′ = 0,v′ ≥ 0}

vT = 1

X E
R E

x e r
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   , 

with   and  as the fraction of ribosome allocated to  or , the functions , 

 and  are nonlinear saturation function (enzyme kinetics),  is growth rate 

and concentrations are defined as molecule numbers ( ) divided by volume . 

We assume, for simplicity, that the volume of a cell is the sum of its protein 
volumes, 

   , 

with  and  as the protein volumes of  and , respectively. Thus, the growth 
rate equals, 

   . 

This leads to the equation 

    . 

Next, we solve part of the balanced growth equations 

       and , 

so that 

    

or 

d x
dt

= ef (x) − rαEgE(x) − rαRgR(x) − μx

de
dt

= rαEgE(x) − μe

dr
dt

= rαRgR(x) − μr

αE αR E R f (x)
gE(x) gR(x) μ

n V

V = vEnE + vRnR

vE vR E R

μ =
1
V

dV
dt

= vE
1
V

dnE

dt
+ vR

1
V

dnR

dt
= r(vEαEgE(x) + vRαRgR(x))

μ
r

= vEαEgE(x) + vRαRgR(x)

d x
dt

= 0
de
dt

= 0

μx = ef (x) − rαEgE(x) − rαRgR(x)

= r
αEgE(x)

μ
f (x) − rαEgE(x) − rαRgR(x)
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   . 

The two equations in the boxes can be combined to  

 . 

Now using from the final balanced growth requirement, , from which we 

deduce  , we finally find 

  . 

This a nonlinear equation in the growth rate, , and the metabolite concentrations.  
The quadratic dependence in the growth rate can be directly attributed to the 
ribosome, which needs to make both itself and the enzyme. (If the metabolite would 
in turn catalyse a fourth kind of molecule, the relation would be third order in the 
growth rate.) When we set the concentration of  fixed we obtain a ME-model, in 
the spirit of O’Brien and Palsson. The reader is invited to read [26] for the 
mathematical definition of elementary growth modes. It is built directly on top of 
systems of nonlinear balanced growth equations such as the one we derived here, 
but then for whole cells. 

μx
r

=
αEgE(x)

μ
f (x) − αEgE(x) − αRgR(x)

x(vEαEgE(x) + vRαRgR(x)) =
αEgE(x)

μ
f (x) − αEgE(x) − αRgR(x)

dr
dt

= 0

μ = αRgR(x)

(1 + xvR)μ2 + (αEgE(x) + xvEαEgE(x))μ − αEgE(x)f (x) = 0

μ

x
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