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‘What I cannot create, I do not understand’

(Richard Feynman, Nobel laurate)





Prologue

Figure 1: All the protein struc-
tures of the enzymes occur-
ring in glycolysis (from: https:
//pdb101.rcsb.org/motm/50, con-
sult this page to warm up). What is
striking is that glycolytic enzymes have
multiple subunits, catalyse reactions
with multiple substrates and prod-
ucts, have allosteric as well as catalytic
and have greatly varying equilibrium
constants. In other words, glycolysis,
which is omnipresent across species,
is a remarkably complex metabolic
system.

All life on our planet depends on the activity of enzymes.
All enzymes are proteins and encoded on genes. (The ribosome is the
odd one out, as it partially consists of RNA and protein.) Enzymes
are generally active inside cells: either as motor proteins walking
over, for instance, actin or DNA (see https://pdb101.rcsb.org/

motm/176); as transporters, carrying (macro)molecules over mem-
branes (see https://pdb101.rcsb.org/motm/118); or as metabolic
enzymes (Fig. 1), taking care of chemical conversions. Some have,
however, extracellular functions such as breaking down sugar poly-
mers or scavenging nutrients.

Enzymes are catalysts, they are recycled unaltered after the com-
pletion of a single catalytic event, ready for the next. Accordingly, all
catalytic events correspond to cyclic mechanisms (Fig. 2), composed
of sequences of transitions between enzyme states, starting and end-
ing at the same state. The rate of such transitions can be described in
terms of mass-action kinetics. Together with conservation of the total The rate equation of reaction 1 in figure

2 expressed in mass-action kinetics
equals v1 = k+1 · e · s − k−1 · es

enzyme concentration and assuming steady state, this leads to an
universal description of steady-state enzyme kinetics, such as, in the
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simplest case, the rate equation known as the reversible Michaelis-
Menten equation (or Briggs-Haldane relationship). The rate equation for the enzyme

catalysing the reaction E + S −⇀↽− ES −⇀↽−
EP −⇀↽− E + P (shown in figure 2), was
derived first by Briggs & Haldane:

v =
V+

M
s

KS
−V−

M
p

KP
1+ s

KS
+

p
KP

in 1925 (https:

//doi.org/10.1042/bj0190338).

Deriving rate equations of enzymes in the general case – incor-
porating multiple substrates, products, effectors and subunits – for
later use in mathematical models of the dynamics and regulation of
metabolism is one of the aims of this course. Two methods exist for
derivation of enzyme kinetics. The rapid-equilibrium approximation,
which is fast and efficient, but more approximative than the steady-
state method, which is more realistic but more complex. We will
focus most on the rapid-equilibrium approximation. An associated
aim is to understand the role of thermodynamics and kinetics in such
descriptions.

Figure 2: Example of a cyclic enzyme
mechanism. The enzyme E converts
substrate S into prodict P. The cycle
starts with E and after a single catalytic
event E + S → E + P, E is returned.
So, E is a catalyst. An example of an
enzyme with only a single substrate
and product – which is a bit of minority
enzyme in the cell – is triose phosphate
isomerase (TPI; see https://www.rcsb.

org/structure/2ypi)).

Enzymes are generally active in networks, exchanging

and converting reactants. Enzyme rates are dependent on
concentrations of reactants, effectors and the catalysing enzyme. The
reactants and effectors are generally also reactants of other enzymes
in the cell, together forming a network.

Effector regulation may involve regulatory effects of distant chemi-
cal compounds in the network, via feedforward or feedback allosteric
loops (Fig. 5). Enzymes that are regulated in this manner are often
composed out of several cooperative subunits (Fig. 3). Subunit ‘co-
operation’ sensitises them for regulation, while unregulated enzymes
are generally monomeric and less sensitive (Fig. 4). Surprisingly,
many enzymes in the cell are multimeric and regulated by effector
molecules. Consider, for example, the metabolic regulation of the
central metabolism of E. coli in figure 5.

Figure 3: Pyruvate kinase is an exam-
ple of a multimeric enzyme, composed
out for identical subunits (valid across
speciesl; here the human complex is
shown). Pyruvate kinase catalyses the
conversion PEP + ADP −⇀↽− PYR + ATP
in glycolysis. Phosphoenlopyruvate
(PEP), ADP, pyruvate (PYR) and ATP
(orange) bind to the catalytic site to-
gether with the competitive inhibitor
oxaloacetate (purple). Fructose 1,6-
bisphosphate is shown in red and binds
to an allosteric distant from the cat-
alytic site and change the conformation
of the protein complex. This pictures
was taken from http://doi.org/10.

2210/rcsb_pdb/mom_2022_6. For more
structures and the influence of effectors,
investigate the weblinks in the legend
of "Exploring the structure" on the bot-
tom of the page of http://doi.org/10.
2210/rcsb_pdb/mom_2022_6.

The dynamics of metabolic networks is dictated by chemical ele-
ment conservation and enzyme kinetics, while steady states are also
characterised, in addition, by balanced net rates of synthesis and
degradation for each chemical compound.

One of the main aims of this course is also to make and analyse
mathematical models of metabolism, given enzyme kinetic descrip-
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Figure 4: Multiple subunits sensi-
tises an enzyme to concentrations
of reactants and, predominantly, of
regulators. We are considering an en-
zyme with either 1 subunit (dashed
lines) or one with 4 (full lines). The
enzyme catalyses the conversion
A + B −⇀↽− P + Q. The kinetics of the
enzyme is described by a reversible
Monod-Wyman-Changeux rate equa-
tion, an equation we derive later in
this text. A. Influence of multiple sub-
units and cooperativity on the rate of
an enzyme as function of a substrate
concentration. B. Influence of multiple
subunits and cooperativity on the rate
of an enzyme as function of an inhibitor
concentration.

For all species on our planet the quantitative descrip-
tions of enzyme kinetics, dynamics and steady states of

metabolic networks is the same, because all species obey the
same fundamental physicochemical laws. The theory of these course
notes are therefore broadly applicable, across species.

An enormous scientific challenge is to understand the

regulation of metabolic pathways in the context of the

metabolic demands and selection pressures on a cell (or

in case of a multicellular species, a ‘coordination or

coherence’ pressure from the organ or tissue). Genotypes
have been tinkered by evolution into ever better adapted genetic
variants of ancestors they have outcompeted or coexist with. Part of
this evolutionary process is the creation of novel genetic variations by
mutations and the selection of fitter genetic variants. The fittest make
most offspring and therefore become more frequent and fix – this is
we call natural selection.

What fitter implies in terms of phenotypic characteristics one can
debate about, but that this in some cases involves metabolism is
beyond question. This also implies that the regulation of metabolism,
via regulation of gene expression and feedback and feedforward
circuitry, has been subject to evolutionary tuning.
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Design Principles in the Regulation of Central Carbon
Metabolism
Central carbon metabolism, encompassing glycolysis, the
pentose phosphate pathway, and the TCA cycle, provides all
the energetic and biosynthetic precursors for the cell, and it is
known to be highly transcriptionally, post-translationally, and
allosterically regulated (Chubukov et al., 2014). The central meta-
bolism of E. coli is also one of the few parts of metabolism where
in vivo evidence is available to support the functional role of small
molecule regulation, e.g., in order to induce flux reversal (Link
et al., 2013). In silico efforts to model the response of central
metabolism to nutrient perturbations, combined with experi-
mental data, have highlighted the fact that our understanding
of the intricate regulation of central metabolism is incomplete
(Gerosa et al., 2015; Hackett et al., 2016; Kochanowski et al.,
2013; Link et al., 2013; Xu et al., 2012a).
Themajority of enzymes in E. coli’s central carbonmetabolism

are regulated (Figure 3; Figure S3), and they interact with more
small molecules than average in the SMRN (Figure S1), reflecting
the heavy research attention these pathways have historically

attracted. Interestingly, some of the enzymes in central meta-
bolism are very heavily regulated, specifically those in upper
glycolysis (e.g., fbpase, pfk, and fba), terminal glycolysis (pck,
ppc, pps, and pyk), and the branching reactions of the TCA cycle
(mae, aceA, and icd). Conversely, some metabolites seem to
have amore central role in certain regions of central metabolism;
PEP, for instance, regulates six reactions in glycolysis (pfk, pgi,
fbpase, fba, pps, and pyk).
A glance at the structure of small molecule regulation in

E. coli’s central metabolism strongly suggests that the distribu-
tion of regulatory interactions is non-random and has likely
been shaped by evolution. What are the pressures selecting
for regulatory interactions in E. coli’s SMRN? In this regard, the
theoretical and experimental literature has proposed a variety
of thermodynamic and economic arguments to explain patterns
of SMR interactions in central carbon metabolism. Below, we
evaluate the consistency of each hypothesis with data from the
E. coli SMRN.
One frequently cited hypothesis is that small molecule regula-

tion is concentrated in those reactions exhibiting a large drop
in free energy (Stryer et al., 2002). To evaluate this possibility,
we acquired thermodynamic data for most metabolic reactions
using the component contribution method (Noor et al., 2013).
Using reactions’ DGo together with reaction stoichiometry and
standard physiological metabolite concentrations of substrates
or products, we calculated a reversibility index (denoted G)
quantifying the extent to which each reaction is thermodynami-
cally reversible (Noor et al., 2012). Using two complementary
methods, we did not find the distributions of G values for regu-
lated/unregulated reactions in central carbon metabolism to be
statistically different (p value < 0.3, Mann-Whitney U test;
p value = 0.1, gene set enrichment analysis; Figure 4B). The
same result was observed when repeating the analysis on all
available reactions in E. coli (p value < 0.5, Mann-Whitney
U test; p value = 0.25, gene set enrichment analysis; Figure 4A;
Table S4). While many irreversible reactions in central carbon
metabolism were indeed regulated by small molecules, a similar
proportion of reversible reactions were also regulated. In partic-
ular, we found reactions, like 6-phosphogluconolactonase in the
PP pathway (EC 3.1.1.31, log10(G) = 4.17), that do not have any
reported small molecule interactions yet exhibit a large drop in
free energy. Similarly, many reversible reactions have several
regulators, as in the case of succinyl-CoA synthetase (EC
6.2.1.5, log10(G) = 0.09), which is inhibited by NADH and alpha-
ketoglutarate, or glucose-6-phosphate isomerase (EC 5.3.1.9,
log10(G) = 0.44), which is inhibited by PEP and 6PGC. Taken
together, our data do not support the hypothesis that thermody-
namically irreversible reactions aremore likely to be regulated by
a small molecule.
A second hypothesis is that cells use small molecule regula-

tion to conserve precious metabolic resources by preventing
futile cycling. We observed several examples of interactions in
the E. coli SMRN supporting this possibility. For example, fbpase
and pfk catalyze opposing reactions, and their simultaneous
operation leads to futile cycling (Daldal and Fraenkel, 1983).
Two metabolites (citrate and PEP) serve as activators for fbpase
and as inhibitors for pfk, thus curbing this futile cycle (Figure 3). A
similar regulatory architecture can be found in the regulation of
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Figure 3. Small Molecule Regulatory Network of E. coli Central
Carbon Metabolism
Depiction of the small molecule regulatory interactions in the central carbon

metabolism of E. coli. Redmetabolites are inhibitors and greenmetabolites are

activators of the indicated reactions. Another view of this SMRN is given in

Figure S3, showing clearly which reactions are inhibited, activated, or both.

Cell Reports 20, 2666–2677, September 12, 2017 2669

Figure 5: Overview of the enzymes
of central metabolism in E. coli and
their regulators (green: activation, red:
inhibitions). From https://doi.org/

10.1016/j.celrep.2017.08.066.
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Yet, we lack a whole-cell understanding of the coordination of
metabolism by local regulation of metabolic pathways. We do have
some understanding of how molecular-mechanistically enzymes in
metabolism are regulated but generally lack understanding of the
cellular benefit of that regulation in terms of an improved fitness.

This is a huge scientific problem. Its solution will have enormous
impact of medicine, biotechnology and our fundamental understand-
ing of life.

Considering the complexity of the scientific challenges

that we nowadays face, quantitative biochemistry and

molecular biology are much needed disciplines. They
remain nevertheless worryingly underrepresented in biology and
chemical curricula.

This text should be informative for biotechnologists, biochemists,
bioinformaticians and biophysicists alike. In particular for those who
do not have a quantitative biological or biochemical background, I
consider any text as this one mandatory.

In these course notes, I outline the basics from enzyme kinetics to
dynamics of metabolic networks, sufficient to start thinking quanti-
tatively about metabolism and making mathematical models. When-
ever possible I give references to more advanced texts or papers. I
hope that you enjoy studying this text and its exercises. On a first
read you can skip the sections with a title that ends with the symbol
"‡".

Suggestions for further reading

1. Milo, Ron, and Rob Phillips. Cell biology by the numbers. Gar-
land Science, 2015.

2. Harold, F. M. (2003). The way of the cell: molecules, organisms,
and the order of life. Oxford University Press, USA.
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Models of Enzymes





Enzymes

!
Figure 6: An artist impression by
David Goodsell of the interior of an
E. coli cell. Proteins, mRNA, plasma
membrane, DNA, etc. are shown. See
also this movie of the intracellular
conditions in an E. coli cell at https:
//youtu.be/8DOYCXWCqQg and the
publication about Escherichia coli by
D. Goodsell who drew this picture
(Goodsell, Escherichia coli, Biochemistry
and Molecular Biology Education, 37(6),
325-332, 2009)

Proteins

The proteins or the subunits of multimeric proteins that we find
inside cells (Fig. 6) are generally composed out of a few hundred
amino acids (300-400 aa/protein) and are about 5 nm in radius. The
protein-protein distance in a cell is about 1 diameter (so ∼ 10 nm), so
the cell is very crowded (Fig. 6).

Proteins continuously diffuse randomly throughout the cell, this
diffusion precedes all chemical reactions. The diffusion rates provide
an upper bound for rates of chemical reactions: the complex forma-
tion of two proteins A and B can of course not proceed faster than
their collision rate.

A ribosome elongates amino-acid peptides, eventually leading to a
protein, at a rate of about 20 aa/s. It takes a ribosome therefore about
350/20 = 17.5 s to make a protein, making the corresponding mRNA
from the gene is only just a tiny bit slower. So RNA polymerase and For a calculation of the tran-

scription and translation times
see http://book.bionumbers.org/

what-is-faster-transcription-or-translation/.

ribosomes are almost in physical contact when coupled transcription
and translation occurs – which is possible in bacteria.

Protein life times vary greatly. Most metabolic proteins are how-
ever stable and are only reduced in concentration due to cell volume
growth, others can be subject to (regulated) degradation by proteases
and have shorter life times.

Protein concentrations vary a lot too, from a few copies per cell
(e.g. transcription factors) to tens of thousands (metabolic enzymes).

Exercise

1. An E. coli cell is approximately 1 µm3 (a yeast cell is about 8 µm in
radius) and the radius of a protein is about 5 nm.

a. Calculate the concentration of 1 molecule in an E. coli cell.

b. How many proteins fit in a E. coli cell when their protein-
protein distance is roughly equal to their diameter? Assume
that proteins are perfect spheres. (note: volume V of a sphere
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with radius r equals V = 4
3 πr3)

c. Say an E. coli cell doubles itself within 1 hour. How many ribo-
somes are needed per cell to make all the required proteins?

d. The ribosome of E. coli is a protein complex composed out of
7459 amino acids. The fast growth rate of an E. coli correspond
to the shortest doubling time. What would this doubling time
and growth rate be if an E. coli cell only consists out of ribo-
somes? Plot the growth rate and doubling time as function of
the ribosomal protein fraction, ranging from 0.05 to 1.

d. The diffusion D of a protein is about D = 5 µm2/s. Calculate
the time that it takes a protein to diffuse the length L = 2 µm of
a E. coli cell, using the relation L2 = 6Dt.

e. Calculate the time τ that it takes for two proteins A and B to
collide with each other, given

τ =
Vcell

4π(DA + DB)(rA + rB)

with DA and DB as their diffusion coefficients and rA and rB as
their radii.

f. When NA copies of protein A and NB copies of protein B occur
the collision time reduces to τ/(NANB). What is time for two
proteins to collide that occur at 100 copies per cell?

g. The diffusion coefficient D can be calculated from kT/(6πηr)
with k as the Boltzmann constant 1.38 × 10−23 JK−1, η as the
viscosity (water: 1 mPa × s) and r as the radius. Compare the
diffusion of a protein (∼ 5 µm2/s) and an E. coli cell in water.

Figure 7: Proteins have different
cellular functions. Only some of
the proteins in a cell act as enzymes,
catalysing reactions.Structural proteins, regulatory proteins and enzymes

Genes code for proteins. Not all proteins are enzymes (Fig. 7), some
have structural (such as actin https://pdb101.rcsb.org/motm/19) or
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regulatory roles (such as Ras (https://pdb101.rcsb.org/motm/148)
or Sox (https://pdb101.rcsb.org/motm/112)).

Examples of structural proteins in E. coli are H-NS (a DNA-
binding nucleosome-like protein), MreB (a protein polymer under-
neath the plasma membrane supporting cell shape) or FtZ (a protein
needed to form the septum in middle of a dividing mother cell).

Examples of regulatory proteins, without a catalytic function, are
transcription factors that change in conformation and DNA affinity
upon covalent modification or small-molecule binding (e.g. a metabo-
lite). For instance, the Lac repressor is removed from the Lac operon
by binding of allolactose, the metabolic product of the enzymes that
are encoded Lac operon. Other examples are membrane-embedded For a model of the Lac operon and its

regulation see https://doi.org/10.

1016/S0006-3495(03)70013-7.
G-protein coupled receptors that regulate intracellular processes
upon extracellular ligand bind via a conformational change in their
intracellular domain.

Enzymes are proteins that catalyse events: such as vesicular trans-
port along an actin polymer, template copying such as DNA replica-
tion, membrane transport or chemical reactions.

As we will see regulatory proteins and enzymes can all be de-
scribed within the same kinetic framework, called the rapid-equilibrium
approximation pioneered by Monod, Wyman and Changeux (MWC)
in 1965. For a recent review about the MWC

model, see https://doi.org/10.1146/

annurev-biophys-050511-102222, the
original reference is https://doi.org/

10.1016/S0022-2836(65)80285-6.
Enzyme types

Three types of enzymes are generally distinguished:

Motor proteins Dynein (https://pdb101.rcsb.org/motm/176) is
an example of a multimeric motor protein. It carries cellular cargo
such as vesicles along microtubules in a eukaryotic cell. A single cat-
alytic event is then a single step made on the microtubule molecule
by the cargo-carrying dynein. F1F0 ATPase (https://pdb101.rcsb.
org/motm/72 and Fig. 8) is also a motor protein, with each of its turns
it transports protons over a membrane and uses the liberated free
energy to catalyse the reaction ADP + Pi → ATP.

Thus, motor proteins can catalyse reactions as metabolic enzymes
do. Other examples of motor proteins are the ribosome, DNA poly-
merase, and RNA polymerase, although we also think of those as
metabolic enzymes since they make a product from substrates.

Another example of a pure motor protein like dynein is the flagel-
lar motor, which can cause bacteria to move in liquids or on surfaces
by propelling them.

Since motor proteins have a net direction of motion, for which they
require free energy, they generally hydrolyse ATP and exploit the
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harvested free energy to induce conformational changes.

Figure 8: ATP synthase which turns
in the plasma membranes of cells (or
mitochondria) making ATP from ADP
and Pi, using the free energy harvest
by the import of protons along their
downwards gradient.

Transporters Transporters transport solutes and proteins over
organellar or cellular membranes (e.g. https://pdb101.rcsb.org/
motm/95), in particular molecules that cannot freely pass over mem-
branes such as charged or bulky molecules. Small-molecule, proto-
nated, weak acids such as acetate, pyruvate or succinate can generally
freely pass over membranes, but this does not mean that cells do not
have (dedicated) transporters for them. Without a constant free en-
ergy input, transporters cannot cause the accumulation of chemical
compounds in- or outside cells at concentrations higher than the out-
or inside concentration. So also transporters are often reliant on a
free energy source such as ATP which hydrolyse into ADP and Pi
to induce the conformational changes associated with transport of a
molecule over a membrane.

Metabolic enzymes Metabolic enzymes (https://pdb101.rcsb.
org/motm/50) catalyse reactions in the cytosolic or intraorganellar
environments of the cell. An example is hexokinase which catalyzes
glucose + ATP → ADP + glucose − 6 − phosphate. One of the fea-
tures of enzymes is, in addition to speeding up reactions, that they
can couple an energy-demanding reaction A to a energy-liberating
reaction B to run A in the opposite direction of its natural ‘tendency’.
This makes enzymes so effective in making complex macromolecules
such as lipids, RNA, DNA and protein which cannot form sponta-
neously without enzyme activity and free energy consumption.

Monomeric versus multimeric enzymes Feedback-regulated
metabolic enzymes or ligand-binding activated transcription factors
are often composed out of multiple, interacting subunits. Coopera-
tion of subunits sensitises them to concentration changes of effector
molecules via changes in conformations with different reactant and
effector affinities (Fig. 4, 10 and 9) – giving rise to switch-like changes
in activity–, which we will explore later.

An example is the activation of pyruvate kinase (Fig. 3) – a mul-
timeric enzyme – in E. coli’s and S. cerevisiae’s glycolysis by fructose-
1,6-bisphosphate. Phosphofructokinase is another well known multi-
meric en feedback-regulated enzyme of glycolysis.
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Figure 9: The active (left) and inactive
(right) conformations of the multi-
meric protein phosphfructokinase
(https://pdb101.rcsb.org/motm/50).

Figure 10: Phosphofructokinase bound
to its reactants (fructose 6-phosphate
in orange, ADP in red and the cofactor
mangesium in green). From: https:
//pdb101.rcsb.org/motm/50. Note that
the those different chemical compounds
do not bind to the same sites on the
protein complex and therefore can only
influence each other their effects on the
enzyme via changes in the structure of
the protein complex.

Enzyme catalysis can be described within one enzyme-kinetics for-
malism

All enzymes are catalysts and are therefore recycled after use, to be
reused for the same purpose again. This means that their mecha-
nism – the order of enzyme-state transitions associated with a single
catalytic event – is always cyclic. Enzymes therefore start and end
at the same starting state, regardless of their function. Also since all
enzyme-state transitions can be described by mass-action kinetics, all
mathematical models of enzyme cycles are based on the same kinet-
ics, thermodynamics and conservation principles. This will enable us
to derive one generally-applicable rate equation for enzymes.





Mass-action-kinetics models of the catalytic cycle of en-
zymes

Mass-action kinetics

Before we start with deriving models of the catalysis rate and regu-
lation of enzymes, we need to briefly revisit mass-action kinetics to
describe the rate of chemical reactions in terms of rate constants and
the concentrations of reactants.

The rate of uncatalysed reaction is universally described by mass-
action kinetics. Here are some examples: I assume that you have seen mass-

action kinetics before.
We use the following convention for
names and concentration of chemical
compound. We write their name in
capitol font, e.g. X, and their concentra-
tion in normal font, i.e. x.

1. S 1−→ P, v1 = k1 · s, for reaction 1 with rate v1 in concentration
time , the

(elementary) rate constant k in time−1 and s as the concentration
of (substrate) S.

2. S
1−⇀↽− P, v1 = k+1 · s − k−1 · p, for reaction 1 with rate v1 in

concentration
time , the forward (elementary) rate constant k+1 in time−1

and the backward (elementary) rate constant k−1 in time−1 and s
as the concentration of (substrate) S and p of the product P. The
forward rate equals v+1 = k+1 · s and the backward rate v−1 = k−1 · p.
Thus, v = v+ − v−.

3. S1 + S2
1−⇀↽− P, v1 = k+1 · s1 · s2 − k−1 · p, for reaction 1 with rate v1 in

concentration
time , the forward (elementary) rate constant k+1 in 1

conc×time
and the backward (elementary) rate constant k−1 in time−1. The
forward rate equals v+1 = k+1 · s1 · s2 and the backward rate v−1 =

k−1 · p. Thus, v = v+ − v−.

4. 2S
1−⇀↽− SS, v1 = k+1 · s2 − k−1 · ss, for reaction 1 with rate v1 in

concentration
time , the forward (elementary) rate constant k+1 in 1

conc×time
and the backward (elementary) rate constant k−1 in time−1. The
forward rate equals v+1 = k+1 · s2 and the backward rate v−1 =

k−1 · ss. Thus, v = v+ − v−.
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From these examples we can conclude that for a chemical reaction
such as,

m1S1 + m2S2 + ... + mkSk −⇀↽− n1P1 + n2P2 + ... + nl Pl ,

the rate is decribed in terms of mass-action kinetics as,

v = k+
k

∏
i=1

smi
i − k−

l

∏
j=1

p
nj
j .

Note that chemical reactions rarely have more than 2 substrates and 2

products, since the spontaneous collision of three molecules and their
conversion into products is extremely unlikely.

Exercise

1. Chemical reaction exercises

a. Why is this reaction s1 + s2 + s3 → p effectively impossible
and is this process better described by a set of reactions such as
this?:

s1 + s2 → s1s2

s2 + s3 → s2s3

s1 + s3 → s1s3

s1s2 + s3 → p

s1 + s2s3 → p

s2 + s1s3 → p

b. Say you investigate the dimerisation process 2S
1−⇀↽− S2 in a test

tube and you start with 1 mM of S. Then which relation be-
tween s and s2 exists that is at each time obeyed? Show that this
relationship implies that any concentration change ∆s equals
2∆s2. Say, k+1 = 10 s−1mM−1 and k−1 = 100 s−1, what are the
concentrations of S and the dimer S2 at thermodynamic equilib-
rium when v = 0?

Chemical reactions occur in the direction of a loss of free energy‡

Reactions such as

∑
i

miSi −⇀↽− ∑
j

njPj,

e.g. A + B −⇀↽− P + Q proceed either in the forward direction, making
P and Q from A and B, or backwards. In the first case, the forward
rate v+ of the reaction exceeds the backward rate v−, i.e.

v = v+ − v− > 0 ⇒ v+ > v−.
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What is the fundamental principle that dictates the direction of the
reaction?

What follows is completely general and applies to mass-action and
enzyme kinetics and works for any number of reactants.

The rate of the reaction shown above, and its forward and back-
ward component, equal,

v = k+ · a · b − k− · p·, v+ = k+ · a · b, v− = k− · p · q

and depend on the concentrations of reactants, which are dependent
on time. So, we can write, In the case of an enzyme-catalysed

reaction we would also obtain

v = v+
(

1 − v−

v+

)
with v+ = V+

Mk+cat f with f as a pos-
itive function of reactant and effector
concentrations.

v = v+
(

1 − v−

v+

)
= v+

(
1 − k− · p · q

k+ · a · b

)
,

and conclude that

v > 0 ⇒ p · q
a · b

<
k+

k−
,

v = 0 ⇒ pe · qe

ae · be
=

k+

k−
, (Thermodynamic equilibrium)

v < 0 ⇒ p · q
a · b

>
k+

k−
,

Thus when the concentration ratio p/s is less than k+/k− the rate is
positive and otherwise it is negative. When p/s = k+/k− the rate is
zero. This state we call thermodynamic equilibrium. Then we denote
the concentration of the reactants with a subscript ‘e’. We also define
the equilibrium constant Keq of the reaction as,

Keq =
peqe

aebe
=

k+

k−
, v = v+

(
1 − v−

v+

)
= v+

(
1 − p · q

a · b · Keq

)
,

A central concept in thermodynamic is the formation Gibbs free
energy µ of a chemical compound, defined under particular con-
ditions (e.g. 1 M concentrations, particular T, particular osmotic
strength, etc.). We start from the concept of Gibbs free energy of for-
mation, and ask the question how much energy did it cost, or was
obtained, when the compound was made from a set of starting com-
pounds? Say, this cost or gain equals µ0′

S for compound S and µ0′
P for

P, with the superscripts denoting the precise standard conditions.
When we have a concentration s of S and p and P then the actual for-
mation free energies of S and P also depend on their concentrations –
as this determines how much we have to make of each –, Note that you cannot take a logarithm

of a variable with a unit, e.g. since
dx/x = ln x and since dx/x is dimen-
sionless so is ln x, hence what is meant
always is that ln x = ln x/x0 with x0 as
some reference value set to 1.

µS = µ0′
S + RT ln

s
s0

, µP = µ0′
P + RT ln

p
p0

with s0 and p0 as the concentration of S and P under standard con-
ditions, say 1 M; so, s0 = 1 and p0 = 1 and they drop out of the
equation (we omit them therefore from now on).
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Now we can define the free energy difference, change or potential
associated with the reaction A + B −⇀↽− P + Q in such a way that it
indicates the Gibbs free energy liberated, or consumed. This we do
by subtracting the formation energy of the substrate from that of the
product,

∆µr = µP + µQ − (µA + µB)

= µ0′
P + µ0′

Q − (µ0′
A + µ0′

B )︸ ︷︷ ︸
∆µ0′

r

+RT ln
p · q
a · b

(1)

This difference ∆µr indicates the difference in the free energy when
you synthesise P and Q or A and B from reference compounds under
standard conditions. It is also the free energy that is liberated (∆µr <

0) or needed (∆µr > 0) for the conversion of A and B into P and Q.
Now we define that in thermodynamic equilibrium:

∆µr = 0 ⇒ −∆µ0′
r = RT ln

pe · qe

ae · be
= RT ln Keq ⇒ Keq = e−

∆µ0′
r

RT ,

which implies that (valid for enzyme-catalysed and uncatalysed
chemical reactions),

∆µr = ∆µ0′
r + RT ln

p · q
a · b

= −RT ln Keq + RT ln
p · q
a · b

= RT ln
p · q

a · b · Keq
,

and therefore, using a result from above,

v−

v+
=

p · q
a · b · Keq

= e
∆µr
RT ,

such that we obtain a relation, valid for enzyme-catalysed and un-
catalysed chemical reactions,

v = v+
(

1 − v−

v+

)
= v+

(
1 − e

∆µr
RT

)
Thus last relation shows that

v > 0 ⇒ ∆µr < 0,

v = 0 ⇒ ∆µr = 0, (Thermodynamic equilibrium)

v < 0 ⇒ ∆µr > 0,

Thus a reaction rate is positive when the Gibbs free energy change of
the reaction is negative and vice versa: hence,

−v∆µr = −
(
v+ − v−

)
ln

v−

v+
≥ 0

This is in fact a version of the second law of thermodynamics and
therefore in agreement with it – as it should. The second law states that chemical

reactions (when considered as isolated
systems) proceed in a direction of
entropy S production. This means that
dS/dt ≥ 0 and dS/dt = −v ∆µr

T ≥ 0.

Thus: all reactions – catalysed and uncatalysed – proceed in a
direction of a Gibbs free energy loss.
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The association and dissociation constant of complex formation re-
action

When we consider the ‘rapid-equilibrium binding approximation’
and ‘binding polynomials’ below for the derivation of rate equations
of enzymes we will use the concept of a ‘dissociation constant’ all the
time. So this is an important section.

Dissociation constants are the equilibrium constants of complex
formation reactions. Consider the reversible formation of the molecu-
lar complex AB from A and B,

A + B −⇀↽− AB.

Complex formation, or association, corresponds to

A + B −→ AB,

while dissociation corresponds to,

AB −→ A + B.

The net rate of association equals,

v = k+ · a · b − k− · ab.

The net rate of dissociation equals,

−v.

The concentration of A, B and AB are constant with time when v = 0
then

ae · be

abe
=

k−

k+
= KD,

we label the concentrations at this thermodynamic equilibrium state
with the subscript ‘e’. The ratio of k+ and k− is an example of an
equilibrium constant, in this case a dissociation constant KD. (The
association constant KA equals KA = 1/KD.)

The unit of the dissociation constant is concentration, which agrees
with the units of the rate constants in the above expression. We will
need this dissociation constant later.

Rates of change in concentrations due to the occurrences of reac-
tions

Consider the concentration of molecule X defined as

x =
nX
V
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with nX as the number of molecules X and V as the volume in which
X resides. Let’s now consider that the number of molecules of X
is dependent in time, due to the occurrence of reactions, and the
volume remains constant, so

x(t) =
nX(t)

V
.

The change in the concentration of X at time t is then given by the
rate of change Note the units of dx/dt are concentration

time
dx
dt

=
1
V

dnX
dt

.

This concentration change is either due to:

1. the in- or export of molecules X from the volume V,

2. the synthesis, degradation or conversion of X molecules.

When we denote the rate of such processes by vj and express them in
units number of reaction events

volume×time then it logically follows that Note that number of reaction events
volume×time =

concentration events
time

dxi
dt

=
R

∑
j=1

nijvj,

with nij as the stoichiometric coefficient of Xi in reaction j, in units
concentration

concentration events . Thus the stoichiometric coefficient gives the number
of molecules X produced (when nij > 0) or consumed (when nij < 0)
per single event of reaction j.

Exercises

1. Consider the following reaction network (underlined reactant
denote those with fixed concentrations)

A + 2X 1−→ 3X

X → 2 B (2)

and the rate equations

v1 = k+1 ax2 − k−1 x3

v2 = k+2 x − k−2 b

and parameters: k+1 = 10, k−1 = 1, k+2 = 10, k−2 = 1, a = 1, b = 1.

a. Give the differential equation for the variable concentrations.

b. Plot v1 and v2 and dx/dt as function x.

c. Show that different initial conditions the concentration of x (at
time 0) can lead to different eventual constant concentrations of
x.
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d. Show that when dx/dt = 0 that v1 = v2 ̸= 0. This is called
a steady state. When v1 = v2 = 0 then we call this state an
equilibrium, we will come back to this later.

e. Consider the concentrations of A and B not as constant any
more. Calculate the concentrations of A, X and B at thermody-
namic equilibrium when their starting concentrations are each
1 mM.

2. Consider the following model of a transcription factor T binding
to a promoter P with two binding sites for T.

T + P
1−⇀↽− TP

T + P
2−⇀↽− PT

T + TP
3−⇀↽− TPT

T + PT
4−⇀↽− TPT

a. Make a drawing of the reaction network.

b. Assume that this experiment is done with a constant promoter
(or DNA) concentration pT . What is the conservation relation-
ship that bounds the concentrations of all the promoter-state
concentrations? The promoter states are P, TP, PT and TPT.

c. Determine the four dissociation constants in terms of their
associated concentrations and rate constants.

d. Use the promoter conservation relationship and the four disso-
ciation constant relation to express the concentration of the free
promoter state in terms of the total promoter concentration, the
dissociation constants, and the concentration of T.

e. Determine the concentration fractions of all the promoter states.

f. Note: in your equations, you will see the appearance of the term

1 +
t

K1
+

t
K2

+
t2

K1K3
, or 1 +

t
K1

+
t

K2
+

t2

K2K4

such equations return later and are called ‘binding polynomi-
als’. They play a central role in rapid-equilibrium kinetics.

g. Show that the following relation holds:

K1K−1
2 K3K−1

4 = 1.

and therefore K1K3 = K2K4!
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Enzymes accelerate chemical reactions by offering favourable con-
ditions in their catalytic site

Chemical reactions that occur uncatalysed may run very slowly in a
watery environment such as the cytosol. Enzymes offer favourable
conditions in their catalytic site such that those reactions occur faster. This is a very good paper for ex-

plaining this topic, using trosephos-
phate enomerase as an example:
https://doi.org/10.1021/acs.

biochem.1c00211.

For instance, adenylate kinase accelerates its reaction by several or-
ders of magnitude (Kerns, S., Agafonov, R., Cho, YJ. et al. The energy
landscape of adenylate kinase during catalysis. Nat Struct Mol Biol
22, 124–131 (2015)). We will later shortly return to this issue.

A mass-action kinetic model of a simple catalytic cycle

Since all enzymes are catalysts, all their catalytic mechanisms are
cyclic, starting and ending at the same enzyme state – generally taken
as the free, unbound enzyme state E.

An example of such a cyclic mechanism is shown in Figure 11. It is
composed of three reactions,

E + S
1−⇀↽− ES

ES
2−⇀↽− EP

EP
3−⇀↽− E + P.

The first and the third reactions are associated and dissociation
events, while the second is the catalytic event. These events or re-
actions are sometimes also called enzyme-state transitions, making
figure 11 a enzyme-state transition diagram.

Figure 11: The simplest cyclic mecha-
nism of enzyme catalysis. The catalytic
event, or reaction, is shown in red. The
other two reactions are either an associ-
ation or dissociation event.

The rates of the three reactions are given by the following rate
equations of mass-action kinetics:

v1 = k+1 · e · s − k−1 · es

v2 = k+2 · es − k−2 · ep

v3 = k+3 · ep − k−3 · e · p.

The rates of change in the concentration are given by the following
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differential equations,

ds
dt

= −v1

de
dt

= −v1 + v3

des
dt

= v1 − v2

dep
dt

= v2 − v3

dp
dt

= v3.

Figure 12: The dynamics of the sim-
plest cyclic mechanism of enzyme
catalysis shown in fig. 11. All the for-
ward rate constants were chosen equal
to 10 and the backward rate to 1, the
starting concentrations were s(0) = 20,
e(0) = 2 and all others 0. The time
axis is logarithmic to make sure all the
dynamics is visible. I advice you to
reproduce these plots.

When we consider this system as a function of time then eventu-
ally all concentrations will become constant (Fig. 12)because all the
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rates have become equal to zero (we will consider this explicitly in
the next section). When this is the case, the following relationship
holds,

k+1 sk+2 k+3
k−1 k−2 k−3 p

= 1.

This is called the detailed balance relationship, we will study it more
in depth later when we relate it to its thermodynamic origins and
explain it. This relationship indicates that you cannot assign values to
rate constants randomly they have to agree with this relationship. In
fact, when you have multiple cycles in a diagram it applies to all of
them.

Figure 13: The dynamics of the sim-
plest cyclic mechanism of enzyme
catalysis shown in fig. 11 and the il-
lustration of the quasi-steady state
regime. The same simulation as in Fig.
12, only now the starting concentration
of S was set to 1000. The quasi-state
regime is shown in yellow, during this
time period the rates of the enzyme are
constant, because the concentrations
of the enzyme-reactant species have
attained a quasi-steady state. I advice
you to reproduce these plots.
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Exercise

1. Consider the catalytic mechanism of the previous section.

(a) Why are all the rates zero when the concentrations have all
become constant?

(b) Derive the detailed balance relationship.

(c) (Warning: complicated and derived step-by-step later) Con- The free energy of formation µX of a
chemical compound X at concentration
x under particular conditions equals
µX = µ0′

X + RT ln x/x0 with x0 = 1,
the concentration of X under standard
conditions, and µ0′

X as the standard
free energy of formation of X. The
free energy difference of a reaction
X −⇀↽− Y equals ∆µ = µY − µX =

µ0′
Y − µ0′

X + RT ln y
x . At thermodynamic

equilibrium: ye
xe

= Keq and ∆µ = 0

such that µ0′
Y − µ0′

X = −RT ln Keq. Thus:
∆µ = RT ln y

xKeq
. I fear that some of you

have forgotten this, if so, then do not
attempt question c. on the left. It will
be explained once more later.

sider the case that s and p are considered constant. Then the
concentrations of the enzyme states can become constant when
v1 = v2 = v3 ̸= 0. The free energy of the first reaction is
now given by ∆µ1 = RT ln es

e·s·K1
, that of the second reaction by

∆µ2 = RT ln ep
es·K2

, and of the third reaction by ∆µ2 = RT ln e·p
es·K3

.
Show that when you sum those free energies, you obtain the
free energy ∆µ of the net reaction S −⇀↽− P, that now the follow-
ing relationship holds,

k+1 sk+2 k+3
k−1 k−2 k−3 p

= e
−∆µ
RT

and that the equilibrium constant of the reaction S −⇀↽− P has to
equal K1K2K3. This indicates that indeed the detailed balance
relationship holds in thermodynamic equilibrium when ∆µ = 0
and v1 = v2 = v3 = 0.

2. The sarcoendoplasmic reticulum contains an ATP-dependent
calcium pump (SERCA) that exploits the free energy liberated
from ATP hydrolysis for calcium import. In figure 14, the catalytic
mechanism of SERCA is shown together with the rate constants of
the enzyme-state transitions. Make a mathematical model of this
enzyme and investigate how the steady-state calcium-import flux
depends on the free energy potential of ATP hydrolysis, given that
total adenosine equals 5 mM and phosphate equals 1 mM.

Quasi-steady state regimes of catalytic cycles of enzymes

Clearly inside the cell enzymes are operating at a rate that is un-
equal to zero, since life is associated with a net flux of material
through the cell’s metabolic network. During cell growth at a fixed
cellular growth, metabolism operates at steady state and the rate of
metabolism are all constant.

This must mean that the catalytic event in the enzyme mechanism
shown in figure 11 operates at a rate that is unequal to zero. When
we consider the net synthesis of P from S then

v2 = k+2 · es − k−2 · ep > 0.
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Figure 14: The ATP-driven calcium
pump (SERCA) and its catalytic cy-
cle. The sarcoendoplasmic reticulum
contains a pump that imports calcium
from the cytosol into the reticulum’s
lumen at the expense of the hydrolysis
of ATP. Two calcium atoms are im-
ported per ATP. The binding of calcium
causes a conformational change of the
protein that is associated with calcium
import. The upper figure comes form
https://pdb101.rcsb.org/motm/51,
where you can also find more informa-
tion about the pump. The lower figure
comes from the book by Christopher P.
Fall, Eric S. Marland, John M. Wagner,
& John J. Tyson (Computational Cell
Biology, Springer New York, NY, 2002)
who discuss such models. The confor-
mational change is indicated by the "*"
in the enzyme’s mechanism.
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This rate can only be constant when the concentration of the enzyme
states ES and EP are constant. This implies that v1 = v2 = v3. This
can either occur at constant concentrations of S and P, so during a
metabolic steady state, but also when the concentrations of S and
P are not constant, as long as they are in great excess relative to the
total amount of enzyme. This is illustrated in Figure 13. This shows
that steady-state enzyme kinetics can still apply when the concentra-
tions of the reactants are time varying. This is, of course, a require-
ment when we want to exploit steady-state kinetics, e.g. the Briggs
Haldane equation mentioned in the prologue, in dynamic models of The rate equation for the enzyme

catalysed reaction E + S −⇀↽− ES −⇀↽−
EP −⇀↽− E + P, derived first by Briggs &

Haldane: v =
V+

M
s

KS
−V−

M
p

KP
1+ s

KS
+

p
KP

.

metabolism when reactant concentrations are varying with time.
Thus, our next task is to figure how we derive the rate equation

of enzyme under quasi-steady state conditions, when the enzyme
states are constant in time while the reactants are time varying. We
can even make a more stringent assumption on the speed of enzyme-
state transitions associated with non-catalytic events and assume
that those reactions are operating close enough to thermodynamic
equilibrium to be able to assume that their rates are zero. This is of
course a severe assumption and how good, or how bad, it is is shown
in Figure 15.
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Figure 15: The dynamics of the sim-
plest cyclic mechanism of enzyme
catalysis shown in fig. 11 and the il-
lustration of the quasi-steady state
regime. The same simulation as in
Fig. 13. Now the quasi-steady state ap-
proximation (A) and rapid-equilibrium
approximation (B) of the enzyme rate
– valid only in the quasi-steady state
region – are shown and compared to
the exact simulation (dashed lines).



The rapid-equilibrium approximation for enzyme kinet-
ics

Rapid equilibrium approximation is fast and sufficient for most ap-
plications

The problem with the steady-state method for derivation of rate
equations of enzymes is that it is a lot of work to derive and leads
to equations with a lot of parameters, many of which cannot be re-
liably determined from experiments. We treat this method in a later
chapter. The mathematical form of those equations is, however, very
similar to that of rate equations derived using a more harsh approxi-
mation, the so called rapid-equilibrium approximation. This method
is really simple to use as it can be done by hand in a series of simple
steps. For applications such as mathematical modelling of metabolic
networks, the rapid-equilibrium approximation gives rise to rate
equations that are realistic enough and in agreement with thermody-
namics (but may not always agree with results from enzyme kinetics
assays in cell-free extract, for that the steady-state method is better).

The binding polynomials of an enzyme its catalytic sites and allosteric
sites

A central concept in the rapid-equilibrium approximation is the bind-
ing polynomial of a binding site on a (macro)molecule such as DNA
or a protein. You already encountered one in the exercise on the tran-
scription factor binding to a promoter of a gene. For enzymes, the
key binding sites are the catalytic site – where reactants and effectors
bind – and the allosteric site(-s) – where effectors bind.

We will introduce the binding polynomial for the catalytic site of a
simple enzyme, catalysing the following reaction

E + S
1−⇀↽− ES

2−⇀↽− EP
3−⇀↽− E + P.

Thus, three enzyme states exist: E, ES and EP. The total concen-
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tration of the catalytic site, equals the concentration of the enzyme
(because only one such site occurs per enzyme). The concentrations
of the enzyme states of the catalytic site therefore sum to the total
enzyme concentration:

eT = e + es + ep.

Part of the rapid-equilibrium assumption is to assume that the dis-
sociation and association reactions in the catalytic cycle, i.e. in this
case reaction 1 and 3, are in equilibrium while the catalytic reaction
(number 2) is not. We can therefore relate the concentration of the
enzyme-reactant complexes to dissociation constants, i.e.

es =
e · s
KS

, ep =
e · p
KP

,

and substitute those relations into the total enzyme conservation
relation and derive the binding polynomial of the enzyme, which we
denote by B,

eT = e +
e · s
KS

+
e · p
KP

, ⇒ B =
eT
e

= 1 +
s

KS
+

p
KP︸ ︷︷ ︸

binding polynomial

.

If this enzyme would also have an allosteric site that can bind the
inhibitor I then the following reactions would also exist, in addition
to those above,

E + I
4−⇀↽− IE, ES + I

5−⇀↽− IES, EP + I
6−⇀↽− IEP.

Now, the enzyme conservation relation become,

eT = e + ie + es + ies + ep + iep,

and we have the following additional relations,

ie =
e · i
KI

, ies =
es · i
KI

, iep =
ep · i
KI

.

(Note that we assumed in the previous equations that the affinity of
the enzyme for I does not depend on the binding state of its catalytic
site, i.e. whether it is empty or bound to S or P.) In this case, the
binding polynomial becomes, first we substitute the dissociation
relationships

eT = e +
e · i
KI

+
e · s
KS

+
es · i
KI

+
e · p
KP

+
ep · i
KI

and then we determine the binding polynomial of the enzyme

B =
eT
e

= 1+
i

KI
+

s
KS

+
i · s

KIKS
+

p
KP

+
p · i

KIKP
=

(
1 +

i
KI

)
︸ ︷︷ ︸

binding polynomial
of the allosteric site, A

(
1 +

s
KS

+
p

KP

)
︸ ︷︷ ︸
binding polynomial

of the catalytic site, C︸ ︷︷ ︸
binding polynomial of the enzyme, B

.
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The term 1 + i
KI

is the binding polynomial A of the allosteric site!
Thus, an enzyme with several binding sites that act independently of
each other – so the affinity of one site for molecules does not depend
on the binding state of any of the other sites – has a binding polyno-
mial B that is a product of the binding polynomial of its sites, i.e. in
this case B = C ×A.

Figure 16: An enzyme mechanism for
A + B −⇀↽− P + Q. The catalytic site can
bind A, B, P and Q, but A occupies the
same location in the catalytic site as
P so they cannot simultaneously bind
and B occupies the same location in
the catalytic site as Q so they cannot
simultaneously bind too. You can
conclude this because enzymes state
with both A and P or both B and Q
bound do not occur. Thus the catalytic
consists of two binding sites: one for A
and P and another for B and Q. All the
association and dissociation reactions
are shown in black and the catalytic
reaction in red.

Consider, as another example, the enzyme mechanism shown in
figure 16. The enzyme catalyses the following reaction A + B −⇀↽−
P + Q. Its total enzyme conservation relation equals the sum of all
the concentrations of the enzyme states,

eT = e + ae + pe + eb + eq + aeb + peb + aeq + peq

and its binding polynomial equals (Note that we skipped a few steps
here, do those on paper yourself!)

B = 1 +
a

KA
+

p
KP

+
b

KB
+

q
KQ

+
a · b

KAKB
+

p · b
KPKB

+
a · q

KAKQ
+

p · q
KPKQ

=

(
1 +

a
KA

+
p

KP

)
︸ ︷︷ ︸

binding polynomial of site
1 in the catalytic site, C1

(
1 +

b
KB

+
q

KQ

)
︸ ︷︷ ︸

binding polynomial of site
2 in the catalytic site C2︸ ︷︷ ︸

binding polynomial of the catalytic site of the enzyme, B

. (3)

From this last equation we conclude that the catalytic site of the
enzyme consists of two independent binding sites: site 1 for A or P
and site 2 for B or Q, since the binding polynomial of the enzyme
factorizes. We also conclude that A and P compete for binding 1

and B and Q compete for binding site 2, because they do not occur
together in any of the enzyme states. Figure 17: An alternative enzyme

mechanism for A + B −⇀↽− P + Q. This
mechanism can either bind substrates
or products and not both. For instance,
because the binding of A covers the
binding of P and Q and the binding
of P covers the binding sites of A and
B. All the association and dissociation
reactions are shown in black and the
catalytic reaction in red. See Cleland,
What Limits the Rate of an Enzyme-
Catalyzed Reaction? (Accounts of
chemical research, 8(5), 145-151, 1975)
on page 150 in this paper for an explicit
example of an enzyme with this mecha-
nism and its rate constants parameters.

Now consider figure 17, where we consider an enzyme that again
converts A + B −⇀↽− P + Q but using a mechanism that is different from
figure 16. Now substrates and products cannot bind simultaneously.
For instance, because the binding site of A covers the binding site of
P and Q and the binding site of P covers the binding sites of A and
B. This means that we cannot think of the catalytic site of the enzyme
as consisting of two independent binding sites anymore. Therefore,
the binding polynomial of the catalytic site of the enzyme does not
factorise into a product of binding polynomials,

B = 1 +
a

KA
+

b
KB

+
a · b

KAKB
+

p
KP

+
q

KQ
+

p · q
KPKQ︸ ︷︷ ︸

binding polynomial of the catalytic site
of the enzyme (does not factorize)

.

Finally, consider the enzyme mechanism for A + B −⇀↽− P + Q
shown in figure 18. In this case, substrates and products compete for
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binding to the catalytic sites and they bind in an ordered manner:
A before B and P before Q. In this case, the binding polynomial
corresponds to

B = 1 +
a

KA
+

a · b
KAKB

+
p

KP
+

p · q
KPKQ︸ ︷︷ ︸

binding polynomial of the catalytic site
of the enzyme (does not factorize)

.

It is nearly identical to the binding polynomial of the previous exam-
ple, but now two enzyme state no longer occur, i.e. EB and EQ.

Figure 18: An alternative enzyme
mechanism for A + B −⇀↽− P + Q. This
mechanism can either binds substrates
or products and not both. The binding
of substrates and products is in an
ordered sequence. All the association
and dissociation reactions are shown in
black and the catalytic reaction in red.

Rapid equilibrium approximation of the catalytic cycle of an enzyme

In this section, we will derive the rapid-equilibrium approximation
for 4 different enzymes (Fig. 11, 16, 17, and 18), varying in the num-
ber of their reactants and catalytic mechanisms. You will see that if
you do this stepwise then it is easy to derive rate equations of en-
zymes with this method. In fact, in the next section we will see that
we can simplify this all to one step in case when we know the bind-
ing polynomial of the enzyme.

Let’s start with deriving the rate equation for the reversible reac-
tion (Fig. 11)

E + S
1−⇀↽− ES

2−⇀↽− EP
3−⇀↽− E + P.

The rapid equilibrium approximation method for the derivation of a
rate equation of an enzyme can be broken down into the following
steps,

1. write down the conservation equation of the total enzyme concen-
tration, i.e.

eT = e + es + ep

2. write down the rate of enzyme which equals the rate of the rate-
limiting step in the mechanism, which is always assumed to be
the catalytic reaction, which is reaction 2 in this case – all the other
reactions are either association or dissociation reactions,

v = v2 = k+2 es − k−2 ep.

Thus, we need to express the concentration of ES and EP into the
kinetic parameters of the enzyme-state transitions in the mecha-
nism to determine the rate equation of the enzyme.

3. assume that all the association and dissociation reaction are at
thermodynamic equilibrium and express all the concentration of
the enzyme-reactant complexes, occurring in the total enzyme
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conservation equation, in terms of dissociation constants and
concentrations of the free enzyme state E and the concentrations of
the reactants, i.e.

es =
e · s
KS

, ep =
e · p
KP

.

4. substitute the previous relation into the conservation equation of
the total enzyme and solve for the free enzyme concentration (note
that the binding polynomial appears), Note that the binding polynomial

B = eT/e equals 1 + s
KS

+ p
KP

!

eT = e + es + ep = e +
e · s
KS

+
e · p
KP

⇒ e =
eT

1 + s
KS

+ p
KP

5. determine the concentration of the enzyme-reactant complexes
using the dissociation constant equations and the expression for
the concentration of E,

es =
e · s
KS

=
eT

s
KS

1 + s
KS

+ p
KP

, ep =
e · p
KP

=
eT

p
Kp

1 + s
KS

+ p
KP

6. substitute the previous relations into the rate equation of the en-
zyme,

v = k+2 es − k−2 ep =
k+2 eT

s
KS

− k−2 eT
p

Kp

1 + s
KS

+ p
KP

(4)

7. finally, identify the maximal forward and backward rate V+
M and

V−
M ,

v =
V+

M
s

KS
− V−

m
p

Kp

1 + s
KS

+ p
KP

, V+
M = k+2 eT , V−

M = k−2 eT ,

and now you are done.

Let’s now consider a slightly more complex example (Fig. 17) by
going through the same steps,

1. write down the conservation of the total enzyme concentration

eT = e + ea + eb + eab + ep + eq + epq

2. identify the rate of the enzyme as the rate of the catalytic reaction

v = k+5 eab − k−5 epq

3. assume that all the association and dissociation reactions are at
equilibrium and relate the concentrations of the enzyme species
and the reactants to the the dissociation constants

ea =
e · a
KA

, eb =
e · b
KB

, eab =
e · a · b
KAKB

ep =
e · p
KP

, eq =
e · q
KQ

, epq =
e · p · q
KPKQ
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4. solve for free enzyme concentration (note that the binding polyno-
mial is eT/e). Note that the binding polynomial

equals B = 1 + a
KA

+ b
KB

+ ab
KAKB

+ p
KP

+
q

KQ
+ pq

KPKQ
!e =

eT

1 + a
KA

+ b
KB

+ ab
KAKB

+ p
KP

+ q
KQ

+ pq
KPKQ

5. determine the reactant concentration of the catalytic reaction

eab =
e · a · b
KAKB

=
eT

a·b
KAKB

1 + a
KA

+ b
KB

+ ab
KAKB

+ p
KP

+ q
KQ

+ pq
KPKQ

epq =
e · p · q
KPKQ

=
eT

p·q
KPKQ

1 + a
KA

+ b
KB

+ ab
KAKB

+ p
KP

+ q
KQ

+ pq
KPKQ

6. substitute the previous results into the mass-action rate equation
of the catalytic reaction

v =
k+5 eT

a·b
KAKB

− k−5 eT
p·q

KPKQ

1 + a
KA

+ b
KB

+ ab
KAKB

+ p
KP

+ q
KQ

+ pq
KPKQ

now you are done. Now compare your last equation to equation
4, only the denominator which equals the binding polynomial of
the enzyme has changed! It therefore plays a central role in the
rapid-equilibrium approximation.

Exercise

1. Consider the enzyme mechanism shown in figure 18

a. Determine the rate equation.

b. Determine the binding polynomial B.

c. Conclude that the enzyme mechanisms shown in figures 16, 17,
and 18 all agree with

v =
V+

M
a·b

KAKB
− V−

M
p·q

KPKQ

B

and have different binding polynomials.

2. Consider the enzyme triose phosphate isomerase and its kcat and
KM values for its reactants as reported in https://doi.org/10.

1111/j.1432-1033.1987.tb13388.x (Lambeir, et al. Eur J Biochem
168, 69, 1987).

a. Decide on a possible binding polynomial and rate equation of
this enzyme.
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b. Calculate the equilibrium constant, using the Haldane relation-
ship, for the four different species. What do you conclude?

c. Plot the rate of the enzyme as function of the substrate concen-
tration, at different values of the product concentration for the
four different species. What does this tell you about the possi-
ble concentration ranges of the reactants in cells of those four
species?

Quick derivation of rapid-equilibrium enzyme kinetics using the
binding polynomials of its catalytic and allosteric sites

The rate equation of a monomeric enzyme, according to the rapid-
equilibrium method, is always equal to: In fact, all the rate equations derived

in the previous section agree with this
equation, indicating that you only need
to know the binding polynomial of the
enzyme, which depends on the exact
mechanism of reactant and effector
binding.

v =
V+

M ∏i
si

KSi
− V−

M ∏j
pj

KPj

B . (5)

The binding polynomial of the enzyme can be a product of the bind-
ing polynomials of its independent binding occurring in its catalytic
site or as allosteric sites (Fig. 19),

B = ∏
k
Ck × ∏

l
Al

So, you only need to determine the polynomial equations of the
enzyme’s binding site and then you can derive the rate equation
of the enzyme using the rapid-equilibrium method. Note that the
catalytic site only factorises when it can be viewed as having multiple
independent sites.

Figure 19: A monomeric enzyme with
a catalytic and allosteric site. The
idea is that the binding state of the
allosteric site influences the affinity
of the catalytic site for reactants, and
possibly also vice versa, and that this
happens via structural changes in the
protein. This can happen at the level
of a single protein or for a protein in
a multimeric protein complex, where
individual proteins then influence each
other’s conformations and therewith
their reactant and effector affinities.

When we consider thermodynamic equilibrium, i.e.

v = 0

then we conclude that

V+
M ∏

i

si,e

KS,i
− V−

M ∏
j

pj,e

KP,j
, ⇒ Keq =

∏j pj,e

∏i si,e
=

V+
M ∏j KPj

V−
M ∏i KSi

,

this relation is known as the Haldane relationship and relates enzyme-
kinetic parameters to the equilibrium constant, indicating that enzyme-
kinetic parameters cannot be freely chosen as they have to obey this

relation. Since, Keq = e
∆µ0′

r
RT with the standard Gibbs free energy

change of the reaction defined in the terms of the standard formation
Gibbs free energies, i.e ∆µ0′

r = ∑j µ0′
Pj
− ∑i µ0′

Si
, which are independent

of the nature of the enzyme catalysing the reaction. Thus, we can
write

v =
V+

M ∏i
si

KSi
− V−

M ∏j
pj

KPj

B =
V+

M ∏i
si

KSi

(
1 − ∏j pj

∏i siKeq

)
B (6)
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and
v−

v+
=

∏j pj

∏i siKeq
= e

∆µr
RT .

We remark that

0 <
∏i

si
KSi

B < 1,

this term is often viewed as the saturation function of the enzyme
with substrate and denoted by f (x) with x as the vector of all molecule
concentrations occurring in the cell, including the reactants and the
effectors of the enzyme. Thus, we obtain the general relation

v = k+cateT f (x)
(

1 − e
∆µr
RT

)
,

which, as we shall see later, also applies for multimeric enzymes and
is, therefore, a generalised description of enzyme kinetics.

Inhibition

Enzyme inhibition by an effector I can occur in the catalytic site –
then it typically competes for the same binding site as one or several
of the reactants – or at an allosteric site – then the inhibition cannot
be competitive.

In the case of binding to the catalytic site then the binding polyno-
mial of the catalytic site gets in the simplest case an additional term,
i.e. + i

KI
, e.g. for figure 17

B = C = 1 +
a

KA
+

b
KB

+
ab

KAKB
+

p
KP

+
q

KQ
+

pq
KPKQ

+
i

KI
.

In this case, the inhibitor blocks the binding site of all the reactants
(since no enzyme states occur with the inhibitor bound and a reactant
bound). If the inhibitor only inhibits the binding of A and P then Note B and Q can now still bind to

the enzyme, because they are not
competing for the same binding site as
the inhibitor I.B = C = 1+

a
KA

+
b

KB
+

ab
KAKB

+
p

KP
+

q
KQ

+
pq

KPKQ
+

i
KI

+
q · i

KQKI
+

b · i
KBKI

.

In the case of the inhibitor binding to an allosteric site, with an
affinity that is independent of the state of the enzyme, then, in the
case of allosteric inhibition,

B = C ×A =

(
1 +

a
KA

+
b

KB
+

ab
KAKB

+
p

KP
+

q
KQ

+
pq

KPKQ

)(
1 +

i
KI

)
.

If the inhibitor binds to the catalytic site and an allosteric site then

B = C ×A =

(
1 +

a
KA

+
b

KB
+

ab
KAKB

+
p

KP
+

q
KQ

+
pq

KPKQ
+

i
KI,1

)(
1 +

i
KI,2

)
.
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Exercise

1. Consider the enzyme mechanism shown in figure 17

a. Draw the enzyme mechanism that correspond to the four inhi-
bition cases treated in the previous section.

b. Determine the rate equation in all these cases.

Activation

An activator generally binds to an allosteric site on the enzyme, dis-
tant from the catalytic site. It can therefore only influence the cat-
alytic site properties via a protein structural effect – a change in the
protein’s conformation. We will therefore treat the activation of a
monomeric enzyme by an effector as a special case of the enzyme ki-
netics of cooperative enzymes that change conformation in response
to binding events in the next chapter.

Figure 20: Illustration of a fit of a rate
equation to experimental of lactate
dehydrogenase activity to obtains
LDH’s kinetic parameters for later use
in a mathematical model.

Exercise

1. Fitting enzyme kinetic parameters to experimental

data given a rate equation. Go to https://fairdomhub.org/

investigations/56 where you find experimental data on enzyme
kinetics, accompanying the paper by Penkler et al. https://doi.
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org/10.1111/febs.13237. Download "LDH kinetic data" (an excel
file) and click on kinetic model to see the rate equation of LDH
which you will fit to the data. Your final fits should look like those
shown in figure 20 (or use the fitted parameters shown on the
site) and show that the fit becomes when you change parameters.
Check whether the equilibrium constant agrees with literature
data. Check in the literature that LDH in this organism is indeed a
monomeric enzyme. Note that not all LDH are the same, some are
composed of multiple subunits (see doi:10.1111/j.1742-4658.

2007.06115.x).

2. Enzyme mechanism with parameter values for the rate

constants for the enzyme-state transition reactions

‡In ‘What limits the rate of an enzyme-catalysed reaction? by
Cleland (in Acc of Chem Res, 8(5), 1975), you find an enzyme
mechanism for hexokinase on page 150 (the units are mM and
seconds). If you which you can code this model into a simulation
package and investigate the rate of the enzyme as function of
substrate and product concentrations to make, for instance, figures
like figure 15 when using a rapid-equilibrium enzyme kinetic rate
equation.

3. Deriving rate equations for several monomeric en-
zymes occurring in glycolysis.

(a) Consider a glucose transporter that functions by facilitated
diffusion. The reaction catalysed by this enzyme is GLCe −⇀↽−
GLCi , with GLCe and GLCi as, respectively, the extra- and
intracellular concentration of glucose.

i. Draw a plausible enzyme mechanism.
ii. Determine the binding polynomial for the catalytic site.
iii. Give the entire rate equation.
iv. Use the Haldane relationship to express the kinetic parame-

ters in terms of the equilibrium constant.
v. What is the most likely value of the equilibrium constant?
vi. Note that facilitated-diffusion transporters (sometimes

called permeases) often have an additional term appear-
ing in the rate equation as you can see in equation 14 of
https://doi.org/10.1111/febs.13237. If you want to un-
derstand why this occurs then read https://doi-org.vu-nl.

idm.oclc.org/10.1016/0005-2736(67)90013-2 (Kotyk, A.,
Mobility of the free and of the loaded monosaccharide carrier
in Saccharomyces cerevisiae, Biochimica et Biophysica Acta, 135,
112-119, 1967).
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(b) Consider triose phosphate isomerase. In some microbes, e.g.
Plasmodium (https://doi.org/10.1111/febs.13237), is inhib-
ited by phosphoenol pyruvate (PEP).

i. Draw a plausible enzyme mechanism.

ii. Determine the binding polynomial for the catalytic site
where the reactants bind and the inhibitor binds. PEP acts as
a competitive inhibitor for both reactants. Does it bind in the
catalytic site or in an allosteric site?

iii. Give the entire rate equation.

iv. Use the Haldane relationship to express the kinetic parame-
ters in terms of the rate constant.

v. Calculate the equilibrium constant using the kinetic param-
eters of the enzyme shown in Table 5 of the paper https:
//doi.org/10.1111/febs.13237.

(c) Consider alcohol dehydrogenase. Assume that the catalytic
site consists of two independent binding sites (binding pockets)
where the different reactants bind. N ADH and N AD bind to
one such pocket in the catalytic site while acetaldehyde and
ethanol bind to another.

i. Draw a plausible enzyme mechanism.

ii. Determine the binding polynomial for the catalytic site. Why
does it factorise?

iii. Give the entire rate equation.

(d) Consider aldolase.

i. Draw a plausible enzyme mechanism.

ii. Determine the binding polynomial for the catalytic site. Why
does it not factorise?

iii. Give the entire rate equation.

(e) Consider glyceraldehyde 3-phosphate dehydrogenase.

i. Draw a plausible enzyme mechanism.

ii. Determine the binding polynomial for the catalytic site.

iii. Give the entire rate equation.

4. Consider an enzyme with two substrates and one product and an
allosteric site where an inhibitor binds. Derive a plausible bind-
ing polynomial for its catalytic and allosteric site. Give the rate
equation. Derive the Haldane relationship between the equilibrium
constants and the kinetic parameters.

5. ‡Consider an enzyme with a single substrate and product. Draw a
plausible catalytic cycle. Now assume that this enzyme is activated
by an activator that binds in a allosteric site. Assume that the
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enzyme is active with without the activator but more active when
the activator is bound. What will be the resulting rate equation?



The enzyme kinetics of a multimeric enzyme with coop-
erative subunits

Reversible kinetics of a multi-subunit, cooperative enzyme accord-
ing to the Monod Wyman Changeux formalism

In this section, we will derive the rate equation of a multimeric en-
zyme catalysing a reversible reaction. We will assume that the pro-
teins works according to a mechanism that was first proposed by
Monod, Wyman and Changeux (MWC) in 1965. Here we generalise
their approach to enzymes that catalyse reversible reactions. This
has so far only been done once by Popova and Selkov for a single-
substrate and single-product reactions. By using the binding poly-
nomial concept, the derivation, and in the particular the use, of the
resulting rate equation is straightforward.

Here is the equation we are going to derive in the next section,
which applies to enzyme composed out of n identical subunits,

v =
V+

M
ab

KA KB
CRn−1

(
1 − pq

abKeq

)
CRn + L AT

n

AR
n CT n

, B = CRn + L
AT

n

AR
n CT n . (7)

The interpretation of the equation is explained in figure 21. MWC
considered a multimeric enzyme. We limit ourselves to one with
identical subunits. Each subunit can be either in an active, relaxed
state called R or in a tensed, less-active (or inactive) state T – we as-
sume that T is inactive. The subunits can change in conformation
and when they do so, they all do this simultaneously: so, only R4

and T4 forms exist of a 4-mer enzyme – and not also R1 T3, R2 T2,
etc.. This is assumption is called the ‘concerted symmetry assump-
tion’. (Other models such as the Adair-Pauling or the Koshland-
Nemethy-Filmer model do not make this assumption.) T and R
subunits have different affinities for reactants and effectors, which is
what gives to heigthened sensitivity of the rate of the enzyme to their
concentrations.

Each subunit has a binding polynomial for its catalytic site and
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allosteric site(-s). The binding polynomial of a single subunit is then,
as usual, given by their product. The binding polynomial of the mul-
timeric enzyme is then the product of that of its subunits.

Figure 21: Illustration of the key
concepts of the reversible MWC rate
equation for the reaction A + B −⇀↽−
P + Q. Here we illustrate it for an
enzyme with 4 subunits (n=4) and a
specific choice of its catalytic-site and
allosteric-site binding polynomials. The
mechanism is that each subunit can
exist either in related R state, during
which it is active, and in a tensed T,
in which it either less or inactive, we
assume it to be inactive. The enzyme
has different affinity for reactants
and effectors in its R and T state. The
equilibrium constant for R and T
concentrations in the absence of any
reactants and effectors equals L = t/r.
In this particular case we assume that
molecule Y stabilises the T state, it can
bind to the active site of the enzyme
in the T state while X stabilises the R
state. X is therefore an activator of the
reaction and Y acts as an inhibitor.

Effectors can, for instance, bind exclusively to the R or the T state
and stabilise those states, hereby shifting the conformational equi-
librium either in the direction of R (active) or T (inactive) states. The
ratio of t over r concentration in the absence of reactants and effectors
is given by the conformation equilibrium constant L. The number of
subunits is denoted by n. The binding polynomials have their usual
symbols (B, C and A), except for the additional subscript that indi-
cates whether the binding polynomial belongs to the R or the T state
of the enzyme.

Derivation of the reversible MWC equation‡

We start from the polynomial equation of the subunits in the R and
T state, which are products of the polynomial equations of their
allosteric sites and catalytic site,

BR = AR × CR, BT = AT × CT .

MWC assumed that the subunits act independently, which means
that the binding polynomial of a multimer composed out of n identi-
cal subunits, so Rn and Tn, equals,

BRn = BR
n, BT n = BT

n.
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The ratio of the concentration of the unbound subunits in the T and
R state, so in the absence of reactants and effectors, is defined by
L = t/r. The polynomial equation of the multimeric enzyme now
becomes

B = BR
n + LBT

n = AR
nCRn + LAT

nCT n

The rate of the enzyme equals the summed rates of all the catalytic
sites that have all the substrates bound. The exact value of the rate
depends on the concentrations of the reactants and the effectors and
the fraction of the catalytic sites bound to all the substrates. The total
concentration of catalytic sites equals neT with eT as the concentra-
tion of the multimers. The fraction of multimers with catalytic sites
bound to all substrates equals, Thus, one subunit has a catalytic site in

the state with all substrates bound and
its allosteric sites in an unknown state.
This subunits contributes ∏i

si
Ki
AR to

∏i
si
Ki
AR

nCRn−1 while the remaining
n − 1 subunits can be in any state and
contribute AR

n−1CRn−1.

∏i
si
Ki
AR

nCRn−1

B
this leads to a forward rate equal to

v+ = neTk+cat
∏i

si
Ki
AR

nCRn−1

B .

The backward rate equals

v− = neTk−cat

∏j
pj
Kj
AR

nCRn−1

B .

The net rate of the enzyme equals

v = v+ − v− =
neTk+cat ∏i

si
Ki
AR

nCRn−1 − neTk−cat ∏j
pj
Kj
AR

nCR−1

B .

which we can rewrite using

v = v+
(

1 − v+

v−

)
yielding

v =

V+
max ∏i

si
Ki
AR

nCRn−1

(
1 −

∏j
pj
Kj

∏i
si
Ki

Keq

)
AR

nCRn + LAT
nCT n .

with V+
max = neTk+catwhere we have used the previous result that

B = AR
nCRn + LAT

nCT n. Often this last equation is written as,

v =

V+
max ∏i

si
Ki
CRn−1

(
1 −

∏j
pj
Kj

∏i
si
Ki

Keq

)
CRn + LAT

n

AR
n CT n

. (8)

where LAT
n

AR
n is sometimes referred to as L′.
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From this equation all reversible monomeric and multimeric rate
equations can be derived! So it is the only equation you need to
know to make mathematical models of metabolic networks – pro-
vided you choose to accept the rapid-equilibrium assumption of
enzyme kinetics and the MWC mechanism.

Simplifying conditions of the reversible MWC rate equation for a
multimeric enzyme

The main equation (eq. 8) for a multimeric enzyme simplifies under
particular conditions, as shown in figure 22, into that of a monomeric
enzyme (eq. 5), which we derived in the previous chapter. Thus,
knowing the multimeric equation suffices.

Figure 22: The different ways by
which the general reversible MWC
rate equation for a multimeric protein
simplifies to that of a monomeric
enzyme with a conformation change.Example: phosphofructokinase in S. cerevisiae

Phosphofructokinase (PFK) catalyses the conversion: F6P + ATP −⇀↽−
F16BP + ADP. It consists of two subunits (in yeast) and is a highly
regulated enzyme across species (Fig. 9 and 10). Its kinetics has been
intensively studied in yeast. Figure 23 shows the dependency of the



the enzyme kinetics of a multimeric enzyme with cooperative subunits 51

rate of PFK on reactants and effectors, which are in agreement with
experimental data (see https://doi.org/10.1046/j.1432-1327.

2000.01527.x). The rate equation of PFK, resulting from the analysis
of experimental data, is given by a MWC model

v =
Vmax

α·atp· f 6p
KatpK f 6p

CR

CR2 + LAT
2

AR
2 CT 2

CR = 1 +
atp
Katp

+
f 6p

K f 6p
+

α · atp · f 6p
KatpK f 6p

CT = 1 +
β · atp
Katp

AR =

(
1 +

atp
Ki,atp

)(
1 +

amp
Kamp

)(
1 +

f 16bp
K f 16bp

+
f 26bp
K f 26bp

)

AT =

(
1 +

γ1 · atp
Ki,atp

)(
1 +

γ2 · amp
Kamp

)(
1 +

γ3 · f 16bp
K f 16bp

+
γ4 · f 26bp

K f 26bp

)

with: α = 5.12, L = 0.66, K f 6p = 0.1, Katp = 0.71, β = 3, Ki,atp =

0.65, γ1 = 0.65, Kamp = 0.0995, γ2 = 0.0845, K f 26bp = 0.000682, γ4 =

0.0174, K f 16bp = 0.111, γ3 = 0.397 (all K’s are in mM, the other
parameters are dimensionless). This information was used to make
the plots in figure 9.

Exercise

1. Analyse the rate equation of yeast’s PFK and the dependency of
its rate on reactants and effector concentrations as shown in figure
23.

a. What are the effector metabolites of PFK? Which of those are
activating and which ones are inhibiting?

b. What’s surprising about the binding polynomials of the cat-
alytic site?

c. Which metabolite is absent from the rate, which would you
expect to occur?

d. How would you call the influence of ATP on the rate of the
enzyme?

e. In https://doi.org/10.3390/ijms22031483 PFK of Mycobac-
terium tuberculosis is analysed? What are it’s effectors and are
those working similarly as in S. cerevisiae?

2. Pyruvate kinase is activated by fructose 1,6-bisphosphate as
shown in figure 24. This enzyme has four subunits.
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Figure 23: Enzyme kinetics of phos-
phofructokinase (PFK) of S. cerevisi-
aie. PFK catalyses the following conver-
sion: F6P + ATP −⇀↽− F16BP + ADP. It
is composed of 2 subunits in yeast and
highly regulated by AMP and F26BP.
The plots that are shown are the results
of a MWC model of PFK constructed on
the basis of experimental data (Teusink
et al., https://doi.org/10.1046/j.
1432-1327.2000.01527.x).
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a. Suggest an enzyme kinetic model for it, using the reversible
MWC equation for a multimeric enzyme.

b. In https://doi.org/10.1002/bit.10288 (Chassagnole, et al.,
Biotechnol Bioeng, 79(1), 53-73, 2002) you find a MWC-type
rate equation of PYK. Rewrite it in a form that allows for the
identification of the binding polynomials of the catalytic site
and allosteric sites. Make plots of the rate of PYK as function of
the reactants and effectors (as done for PFK in Fig. 9). Are FBP
and AMP both activators or inhibitors?
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FIG. 7 (left). P-enolpyruvate dependence of pyruvate kinase. 
Standard assays were carried out using 1.33 mM ADP and 10 rn~ 
MgCl, with or without fructose-1,6-Pz (FDP). P-enolpyruvate 
shows homotropic cooperativity (Hill number = 3) in the absence 
of fructose-1,6-Pz and has an approximate K, of 4 mM. In the 
presence of 1 mM fructose-l, 6-Pz, the kinetic response is Michaelis- 
Menten, and the inset shows a Lineweaver-Burk plot which gave a 
K, for P-enolpyruvate of 30 PM. l/V is the reciprocal of the 
initial velocity. 

FIG. 8 (center). P-enolpyruvate dependence of pyruvate kinase. 
Standard assays were carried out in the presence of 2 mM MnClz 
and 1.33 mM ADP with or without 1 mM fructose-1,6-P* (FDP). 
The K, for P-enolpyruvate in the presence of fructose-1,6-Pa is 

TABLE V 
SpeciJicity of enzyme for nucleoside diphosphates 

The assays were carried out as described in the text in a mix- 
ture containing 10 mM MgC12, 1 mM fructose-1,6-Ps and 1 rnM 
P-enolpyruvate. The nucleoside diphosphate was used as the 
variable substrate. The K, values reported are obtained by 
plotting the initial velocity data in a double-reciprocal form as 
described in the text. V,,, refers to micromoles of P-enolpyru- 

_- 
PHOSPHCENOLPYRUVATE , mM 

vate utilized per mg of P ‘yruvate kinase per min. 

Nucleotide 

ADP 
GDP. 
UDP 
IDP . 
CDP.................. 

???a 

0.24 
0.05 
0.42 
0.17 
6.7 

L 

V max 

55 
110 

88 
94 
47 

Nucleotide Specijcity-Using saturating concentrations of 
P-enolpyruvate, Mg2f, and fructose-l ,6-Pz, the Michaelis con- 
stants for various nucleoside diphosphates were determined. 
Since several of these compounds produced substrate inhibition, 
only the initial part of the rate-concentration curve was used to 
evaluate the Michaelis constant (Fig. 9). These values are 
given in Table V. It will be noted that GDP is by far the best 
phosphate acceptor (K, = 0.05 mu) even though it begins to 
show substrate inhibition at concentrations higher than 0.04 
to 0.05 mM. Among the various nucleoside diphosphates tested, 
IDP and CDP also showed substrate inhibition, but this inhibi- 
tion became apparent only at concentrations higher than 2 mM 
and was much less marked than that obtained with GDP. The 
remaining nucleotides, ADP and UDP, gave no inhibition up to 
concentrations of 10 mM. In the absence of fructose-l ,6-PZ, 
the rate-concentration plots for the nucleotides, at least in the 
low concentration ranges, were hyperbolic, but the Michaelis 
constants were higher than those reported in Table V and de- 
pendent upon P-enolpyruvate concentration. 

Activation of Enzyme-Fructose-l ,6-Pz is an effective activa- 
tor of the enzyme (Fig. 10). The 0.5 values (i.e. concentration 

8 PM as determined by the Lineweayer-Burk plot. l/V is the re- 
ciprocal of the initial velocity. In the absence of fructose-1,6- 
Pz, P-enolpyruvate shows homotropic cooperativity, and has an 
approximate K, of 0.12 mM. 

FIG. 9 (right). GDP dependence of pyruvate kinase. A Line- 
weaver-Burk plot of the reciprocal of GDP concentration versus 
the reciprocal of initial velocity (V = micromoles of P-enolpyru- 
vate utilized per mg of pyruvate kinase per min) obtained from 
standard assays in the presence of 1 mM P-enolpyruvate, 1 mM 
fructose-1,6-P% and 10 mM MgC12. The substrate GDP shows 
inhibition at higher concentrations and the Ki for this inhibition 
is obtained from a Dixon plot (inset). 
GDP is 0.05 mM. 

The extrapolated K, for 
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FIG. 10. Pyruvate kinase dependence upon fructose-l ,6-P,. 
Standard assays were carried out in the presence of 1.33 mM ADP. 
10 mM MgCl, and concentrations of P-enolpyruvate as shown, 
The concentrations of fructose-1,6-Pz which gave half-maximal 
velocity were identical with those obtained if 0.5 mM GDP re- 
placed ADP in the assays. 

at half-maximal velocity) for the activator under our experi- 
mental conditions are independent of the nature of nucleotide 
substrate (ADP or GDP). At low concentrations of P-enol- 
pyruvate, the rate-concentration curves for fructose-l ,6-PZ are 
sigmoidal but change to a hyperbolic shape at high concentra- 
tion of the substrate (Fig. 10). These heterotropic interactions 
are similar to those seen when P-enolpyruvate is the variable 
substrate (see Fig. 7). Various compounds related to fructose- 
1, 6-PZ such as glucose-I-P, glucose-6-P, fructose-l-P, fructose- 
6-P, glucosamine-6-P, and glucose-l, 6-PZ tested at a concentra- 
tion of 1 mM neither activate nor inhibit the stimulation of 
activity caused by fructose-l ,6-P. AMP does not activate 
this enzyme. 

Inhibition of Enzyme-In an earlier communication (3) we 
demonstrated that succinyl-Coil was an inhibitor of pyruvate 
kinase. ATP, a product of the enzymatic reaction, did not cause 
any inhibition by itself at low (2.5 mM) concentration but when 
used together with succinyl-CoA caused cooperative inhibition, 
a phenomenon first described by Caskey et al. (31) with the 
enzyme glutamine : phosphoribosyl amidotransferase. With the 
finding that GDP is a better substrate for the E. coli pyruvate 

Figure 24: Pyruvate kinase is activated
by fructose 1,6-bisphophatse. Here
an example from E. coli is shown
from https://doi.org/10.1016/

S0021-9258(19)43120-7.

The complexity of the MWC model: effector-effector interactions

A remarkable property of the MWC model is that it is quite easy
to make models that show unintuitive interactions between two ef-
fectors of an enzyme. For instance, an inhibitor can be turned into
an activator by another effector that acts as an inhibitor when it is
active alone. Two examples are shown in figure 25. They show that
two effectors that are functional as inhibitors (or activators) in the
absence of the other can be turned into an activator (or inhibitor) in
the presence of the other, provided the concentrations of both are
high enough. The model we choose was inspired by the reversible
MWC equation at constant concentrations of the reactants, and all
regulation by the effector is via two allosteric sites (one on the en-
zyme in the R state and other on the enzyme in the T state, each with
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different affinities),

v
V+

max
=

A

A + L
(

1+x+y+cxyxy
1+cx x+cyy+c′xyxy

)4
C

.

One should think of A and C as dependent on the catalytic bind-
ing functions (CR and CT ) dependent on the concentrations of the
reactants.
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Figure 25: Effector-effector interactions
that turn an activator into inhibitor
and vice versa. A. An inhibitor (effector
1) is turned into an activator by effector
2. Effector 2 is also an inhibitor when
effector 1 is absent. B. An activator
(effector 1) is turned into an inhibitor
by a second effector (effector 2) that
also acts an activator in the absence of
effector 1. Parameters: A.: L = 1, cx =
0, cy = 0.1, cxy = 0, c′xy = 2, A =
2, C = 1. and B.: L = 1, cx = 3, cy =
2, cxy = 10, c′xy = 4, A = 0.5, C = 1.

When we make x and y dependent on each other, e.g. via y =

10 − x or as y = x/10, mimicking respectively a conserved moiety or
an equilibrium concentration relationship leads to even more exotic
dependencies shown in figure 26.

Figures figure 25 and 26 illustrate that the study of enzyme with
cooperative subunits that are regulated by multiple effectors can
give rise to unexpected behaviours. Thus, when you encounter a
cooperative protein – always a multimeric proteins – then beware of
the complexities that it can give rise to.
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Figure 26: Effector-effector interactions
giving rise to peaked and vallyed
activation or inhibiton. A. two effectors
are dependent and sum to 10. B. two
effectors are dependent and effector
1/effector 2 equals 10. Parameters: A.
& B.: cx = 0, cy = 0.1, cxy = 0, A =
2, C = 1.





The steady-state method for enzyme kinetics

The quasi steady-state rate equation of enzymes

When enzymes are operating under quasi steady-state conditions
(Figure 13), the differential equations describing the rate of change of
the concentrations of the enzyme states are all zero, Those of the reactants are now not

equal to zero, unless the entire
metabolic network is at steady state.de

dt
= −v1 + v3 = 0

des
dt

= v1 − v2 = 0

dep
dt

= v2 − v3 = 0.

This set of equations shows that at quasi-steady state all the rates of
the catalytic cycle are equal: v1 = v2 = v3. Since we are not consid-
ering enzyme synthesis or degradation, we also have to conclude that
at all times the sum of the enzyme concentrations equals their sum at
time 0, which we shall to refer to as the total enzyme concentration
eT ,

eT = e(0) + es(0) + ep(0) = e(t) + es(t) + ep(t).

That the previous conservation equation holds is also illustrated by
the fact that

de
dt

+
des
dt

+
dep
dt

= 0,

indicating that the sum of those concentrations does not change with
time.

This last equation also indicates that the rate of change equations
are linearly dependent. A consequence of that is that solving for the
steady-state concentrations of the enzyme states is not possible from
these three (since one contains exactly the same information then the
other two such that we come one equation short). Thus, we need to
take two rate of change equations and the conservation equation to
arrive at the three equations needed to determine the three steady-
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state concentration of the enzyme states, i.e.

k+1 · es · s − k−1 · ess − (k+2 · ess − k−2 · eps) = 0

k+2 · ess − k−2 · eps − (k+3 · eps − k−3 · e · p) = 0

e + es + ep = eT .

This is set of three equations are linear with respect to the concentra-
tions we would like to determine. So, we can also write them in the
following matrix format.

 k+1 s −k−1 − k+2 k−2
k−3 p k+2 −k−2 − k+3

1 1 1


 es

ess

eps

 =

 0
0
eT

 (9)

Solving this set of equations – by hand, by linear algebra, or by mak-
ing use of software (e.g. Mathematica) – leads to the following ex-
pression of the steady-state concentrations in terms of the kinetic
parameters.

 es

ess

eps

 =

 k+1 s −k−1 − k+2 k−2
k−3 p k+2 −k−2 − k+3

1 1 1


−1 0

0
eT



= eT


k+2 k+3 +k−1 (k−2 +k+3 )

k−1 k−2 +(k−1 +k+2 )k+3 +(k−1 +k−2 k+2 )k−3 p+k+1 (k−2 +k+2 +k+3 )s
k−2 k−3 p+k+1 (k−2 +k+3 )s

k−1 k−2 +(k−1 +k+2 )k+3 +(k−1 +k−2 k+2 )k−3 p+k+1 (k−2 +k+2 +k+3 )s
k−3 (k−1 +k+2 )p)+k+1 k+2 s

k−1 k−2 +(k−1 +k+2 )k+3 +(k−1 +k−2 k+2 )k−3 p+k+1 (k−2 +k+2 +k+3 )s


The rate of the enzyme is generally associated with the catalytic

reaction in the enzyme’s mechanism. In this case this correspond to
reaction 2. Thus, the (quasi) steady-state rate of the reaction, which
we will denote by v, equals,

v = v2 = k+2 · ess − k−2 · eps

=
eTk+1 k+2 k+3 s − eTk−1 k−2 k−3 p

k−1 k−2 + (k−1 + k+2 )k
+
3 + (k−1 + k−2 k+2 )k

−
3 p + k+1 (k

−
2 + k+2 + k+3 )s

It is customary to express rate equations of enzymes (derived under
quasi steady-state or rapid-equilibrium conditions) in terms of en-
zyme kinetic parameters instead of the (elementary) rate constants of
the enzyme mechanism. Accordingly, we define The rules to identify enzyme kinetic

parameters as function of elementary
rate constants were developed by
Cleland. Cleland, Wsd W. Biochimica
et Biophysica Acta (BBA) 67 (1963):
104-137.; Cleland, W. W. Biochimica
et Biophysica Acta (BBA) 67 (1963):
173-187.
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k+cat =
k+1 k+2 k+3

k+1 (k
−
2 + k+2 + k+3 )

V+
max = k+cateT

KM,S =
k−1 k−2 + k−1 k+3 + k+2 k+3

k+1 (k
−
2 + k+2 + k+3 )

KM,P =
k−1 k−2 + k−1 k+3 + k+2 k+3

k−3 (k
−
1 + k−2 + k+2 )

k−cat =
k−1 k−2 k−3

k−3 (k
−
1 + k−2 + k+2 )

V−
max = k−cateT

which leads to the following expression of the rate equation of the
enzyme, Note that this equation is the same

as the one obtained with the rapid-
equilibrium approximation. Note also
that relationships of the K’s are now
more complex functions than in the
rapid-equilibrium approximation. Thus,
for the same enzyme mechanism the
two methods give rise to the same
equations but different enzyme-kinetic
parameters values. Consider once
more figure 15 for a comparison of the
performance of both methods.

v =
V+

max
s

KM,S
− V−

max
p

KM,P

1 + s
KM,S

+ p
KM,P

, (10)

which is known as the reversible Michaelis Menten (MM) equation
and was first derived by Briggs and Haldane in 1925.

Exercises

1. We will study some aspects of the reversible MM equation (eq.
10).

(a) An important aspect of enzymes is that their rates are de-
pendent on their substrate and product concentrations. Under
which conditions occurs: i. v → V+

max, ii. v → −V−
max, iii.

v → V+
max/2, or iv. v → −V−

max/2?

(b) Now consider the enzyme as irreversible. The product con-
centration still influences the rate of the enzyme by so-called
product inhibition. Convince yourself that this indeed happens
and is a strong effect by plotting v/V+

max as function of s/KM,s

for different values of p/KM,p.

(c) Why will the rate of an enzyme inside a cell never attain its
V+

max value?

(d) Determine the relationship between the concentration ratio
p/s and the kinetic parameters of the enzyme when v = 0. How
is this state of the enzyme called? Which other relationship
holds for this ratio of p/s? So what do you conclude?

(e) What is reaction that is catalysed by the enzyme?
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2. Consider the enzyme with catalytic mechanism,

E + S
1−⇀↽− ES

ES 2−→ E + P.

(a) Draw the catalytic cycle diagram and confirm that it is cyclic
(by only drawing each enzyme state only once in the diagram).

(b) Determine the rate equation of the enzyme under steady state
conditions in terms of the elementary rate constants of the cat-
alytic mechanism.

(c) Identify the kinetic parameters of the enzyme, Vmax and KM,S.

(d) What is the concentration of the S when Vmax/2?

(e) What is reaction that is catalysed by the enzyme?

Thermodynamic driving force, thermodynamic equilibrium, and the
Haldane relationship for the reversible MM equation‡

Consider the following reaction,

S
1−⇀↽− P,

which is catalysed by an enzyme according the reversible Michaelis-
Menten rate equation (eq. 10). When the enzyme rate equals zero
then

v = 0 ⇒ pe

se
=

V+
maxKM,P

V−
maxKM,S

=
k+1 k+2 k+3
k−1 k−2 k−3

.

The concentration of the product and the substrate have a subscript
e under this condition because it is a thermodynamic equilibrium
conditions (as opposed to a steady state). Thus, the concentrations of
the reactants are constant now because all the rates are zero.

When rates of reactions are zero then the reaction does not have a
net thermodynamic driving force,

∆µr = µP −µS = µ0′
P +RT ln pe −µ0′

S −RT ln se = µ0′
P −µ0′

s +RT ln
pe

se
= 0

and we conclude that
pe

se
= e

−∆µ0′
r

RT ,

with ∆µ0′
r = µ0′

P − µ0′
S . The ratio of the equilibrium product concen-

trations over the equilibrium substrate concentrations is called the
equilibrium constant Keq of the reaction. We can conclude that,

pe

se
= e

−∆µ0′
r

RT =
V+

maxKM,P

V−
maxKM,S

=
k+1 k+2 k+3
k−1 k−2 k−3

= Keq. (11)
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The relations in equation 11 are called the Haldane relations which
are obeyed at thermodynamic equilibrium and constrain enzyme
kinetic parameter values.

The following relation holds for all states of the enzyme – dy-
namic, steady-state and thermodynamic equilibrium –,

∆µr = µ0′
P − µ0′

s︸ ︷︷ ︸
−RT ln Keq

+RT ln
p
s
= RT ln

p
sKeq

, ⇒ p
sKeq

= e
∆µr
RT .

which indicates that a reaction with a free energy potential of a reac-
tion ∆µr ̸= 0 is removed from thermodynamic equilibrium such that
p
s ̸= Keq and that therefore v ̸= 0 (which we will conclude next).

Now we return to the rate equation of the enzyme we are con-
sidering (eq. 10) and identify its forward rate v+ and backward rate
v−,

v = v+ − v−, v+ =
V+

max
s

KM,S

1 + s
KM,S

+ p
KM,P

, v− =
V−

max
p

KM,P

1 + s
KM,S

+ p
KM,P

Given these we can conclude that

v = v+
(

1 − v−

v+

)
,

v−

v+
=

V−
max

p
KM,P

V+
max

s
KM,S

=
p

s V+
maxKM,P

V−
maxKM,S

=
p

sKeq
= e

∆µr
RT .

(12)
Thus, we can write the reversible MM rate equation, using rela-

tions 12, also as

v =

V+
max

s
KM,S

1−e
∆µr
RT︷ ︸︸ ︷(

1 − p
sKeq

)
1 + s

KM,S
+ p

KM,P

(13)

Why is equation 13 worth mentioning and is equation 10 not
enough for modelling purposes? The reason is the Haldane relation
(eq. 11),

Keq = e
−(µ0′

P −µ0′
S )

RT =
V+

maxKM,P

V−
maxKM,S

.

Since the standard formation energies of P and S are independent of
the enzyme, they are tabulated. Therefore, the equilibrium constant
of the reaction is independent of the (amino acid structure of the) en-
zyme. Thus, all enzymes with the same reactants have the same equi-
librium constant – so all hexokinases, aldolases, etc., regardless of
the species and their (allosteric) regulation. So, when you know the
reactants of a reaction, you can calculate, or look up, its equilibrium
constant. Now look at the previous equations. When you know the
equilibrium constant you know only three of the kinetic parameters
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of the enzyme need to be known and not four, i.e. V−
max =

V+
maxKM,P

KeqKM,S
.

Hence, we often write the reversible MM rate equation (eq. 10) as
equation 13.

What is free energy and why is it lost in a chemical reaction?‡

Consider once more equation 12,

v = v+
(

1 − v−

v+

)
,

v−

v+
= e

∆µr
RT , ∆µr = RT ln

v−

v+
,

from which we conclude that

v = v+
(

1 − e
∆µr
RT

)
,

which is a general equation: valid for all reversible chemical reac-
tions described by mass-action and enzyme kinetics. This equation
indicates that

1. v > 0 when ∆µr < 0 since then e
∆µr
RT < 1

2. v = 0 when ∆µr = 0 since then e
∆µr
RT = 1

3. v < 0 when ∆µr > 0 since then e
∆µr
RT > 1

Thus, the rate of a reaction has an opposite sign when compared to
the sign of its free energy potential,

sign(v) = −sign(∆µr).

From the last equation we conclude that the following law is obeyed
by every (bio)chemical reaction, the product of its rate and minus its
free energy potential, i.e. −∆µr, is larger than or equal to 0, In fact, −v ∆µr

T equals entropy produc-
tion and from basic thermodynamics
you may remember that entropy S
always increases or stays constant.
Hence dS/dt = −v ∆µr

T ≥ 0 and
−∆µr

T is then called the thermodynamic
driving force. These relations show
that sign(ds/dt) = −sign(∆µ). Since,
dS/dt ≥ 0 for all reactions inside re-
action networks, it is also true for the
entire network. We will return to this
later, it leads to the conclusion that
metabolic network consume free en-
ergy and produce entropy to maintain
themselves at a steady state that it life
supporting.

−v∆µr = (v+ − v−)RT ln
v+

v−
≥ 0

From relations 12 we also infer that

−∆µr = RT ln
v+

v−
.

This relation indicates that a reaction with a more negative free en-
ergy potential (thus ∆µr < 0 → ∆µr << 0) favours the forward
reaction over the backward reaction, i.e. v+ > v−. When there exists
no net potential, so ∆µr = 0, then the forward and backward reaction
have an equal rate.

Thus, what is ‘free energy’? It biases reactions (or generally pro-
cesses) to particular directions. This is what ‘(chemical) work’ means.

Consider the reaction S −⇀↽− P and that ∆µr < 0. Now we know
that v > 0 and v+ > v−; thus, P is made and S is lost. How does
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this change in concentration of S and P at time t influence ∆µr at the
next moment in time? Do we get more free energy from that or do
we loose it? Thus, does ∆µr rise (and we loose energy) and become
less negative. Or do we gain energy? When we are loosing Gibbs
free energy, then the system consumes it – this consumption or free
energy loss is called dissipation. To address this we need to know
whether dµr

dt is positive. Thus, consider,

dµr

dt
=

∂µr

∂s
ds
dt

+
∂µr

∂p
dp
dt

=

(
−∂µr

∂s
+

∂µr

∂p

)
v (note : µr(t) = RT ln

p(t)
s(t)Keq

)

=

(
−

∂ ln p
sKeq

∂s
+

∂ ln p
sKeq

∂p

)
v

=

(
1
s
+

1
p

)
v > 0. (14)

This shows that the free energy is lost while the reaction proceeds in
the positive direction as the free energy becomes less negative with
time. Thus, when ∆µr < 0 such that v > 0 and the reaction makes
P from S, d∆µr/dt > 0 and therefore ∆µr becomes less negative, we
are loosing Gibbs free energy. As a consequence, v decreases, because
v+/v− reduces, and P is made less quickly from S by the enzyme.
This continues until ∆µr = 0, then v = v+ − v− = 0 and then
pe/se = Keq. Thus chemical reactions dissipate free energy unless
it is lost (and all has been turned into entropy) and thermodynamic
equilibrium is reached . Note that this not made that entropy

production now always implies heat
production, as some chemical reactions
are exergonic (heat producing) and
others are endergonic (heat consuming).
So you can make a refrigerator with
chemical reactions!

The speed limit of enzyme is set by reactant diffusion and provides
an upper bound for k+cat/KM,S

‡

Consider again equation 13, but now without product,

v = V+
max

s
s + KM,S

.

When the concentration of the substrate is very low, say because the
enzyme is consuming it so rapidly, then the rate equals V+

max
KM,S

s and is
therefore proportional to

v ∝
V+

max
KM,S

∝
k+cat

KM,S
.

The parameter k+cat
KM,S

is a very important property of enzymes and
generally considered to reduce during evolution. See, for instance: Bar-Even et al. The

Moderately Efficient Enzyme: Evolu-
tionary and Physicochemical Trends
Shaping Enzyme Parameters, Biochem-
istry, 50, 21, 4402-4410, 2011.
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An enzyme that has a very high value of k+cat
KM,S

is considered very
efficient as it has a high rate when the substrate concentration is low.
When does this occur? From above, we know that

k+cat =
k+2 k+3

k−2 + k+2 + k+3
, KM,S =

k−1 k−2 + k−1 k+3 + k+2 k+3
k+1 (k

−
2 + k+2 + k+3 )

,

which leads to (since all k’s are positive)

KM,S

k+cat
=

1
k+1

+
k−1

k+1 k+2
+

k−1 k−2
k+1 k+2 k+3

≥ 1
k+1

,

and therefore,
k+cat

KM,S
≤ k+1 .

Thus, the speed limit of a reversible MM enzyme per unit enzyme

and substrate is set by the rate of the reaction E + S
k+1 ·e·s
−−−→ ES divided

by the enzyme concentration and substrate concentration so by k+1 . You may find this confusing. Isn’t the
speed limit of an enzyme determined
by its V+

max? That is indeed the speed
limit when the concentration of S is
very high and this concentration is
then considered as fixed. In a metabolic
network, the concentration of S is a
variable and a very speedy enzyme
will reduce its concentration because it
consumes it so fast. When an enzyme
evolves and operates ever faster, its rate
becomes more and more comparable
to that of the rate of its diffusional
encounters with substrate. Eventually
it becomes limited by those diffu-
sional encounters and the enzyme is
effectively always waiting for a new en-
counter and, hence, its rate has become
diffusion limited. Then, the time for the
reaction S → P is much shorter than
the waiting time for the next diffusional
encounter. Then, you have the fastest
enzyme possible and evolution cannot
speed it up any more. An example of
such an enzyme is carbonic anhydrase.

The rate constant k+1 has to do with the diffusional encounter
of the enzyme with its substrate and the probability that such an
encounter leads to binding. Thus, one can think of the reaction E +

S 1−→ ES as involving a transition state complex ES‡, i.e. E + S
1a−⇀↽−

ES‡ 1b−→ ES (according to Eyring’s transition state theory). When
k1b >> k−1a nearly all encounters are productive and when k1b >> k+1a
the enzyme-substrate complex formation is diffusion limited.

What is the maximal value of k+1 ? Earlier we already used the
relationship that the time between diffusional encounter of two
molecules A and B equals,

τ =
V

4π(DA + DB)(rA + rB)
.

This equation we can turn into k+1 via an unit conversion. The unit of
k+1 is M−1s−1 while the unit of τ is s (for two single molecules). So,

k+1 =
VNA

τ
= 4π(DA + DB)(rA + rB)NA,

which has unit: dm3/(mol · s) = M−1s−1 with D in dm2/s and
r in dm. When we consider glucose with a diffusion coefficient of
600µm2/s in water and an enzyme with a radius of 5 nm then we
obtain

k+1 =
VNA

τ
≈ 4πDglcrenzymeNA

= 4π600
(10−5dm)2

s
· 5 · 10−8dm · 6 · 1023 1

mol
≈ 1010M−1s−1. (15)
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An analysis of enzyme data from databased by Bar Even et al. (dx.
doi.org/10.1021/bi2002289) indicates that the average enzyme
has kcat ≈ 10 s−1 and kcat/KM ≈ 105 M−1s−1, so way below the
speed limit. As one of the fastest enzyme of the planet, they report
superoxide dismutase anhydrase, which has a kcat/KM ≈ 109 M−1s−1

and a kcat ≈ 2 · 105 s−1.

The affinity-vs-rate trade-off for enzymes with an equilibrium con-
stant that is close 1 (e.g. facilitated diffusion transporters)‡

Above we deduced that

Keq =
V+

maxKM,P

V−
maxKM,S

Now consider a transporter for glucose that operated according to a
facilitated diffusion mechanism. Thus we are considering

glcout −⇀↽− glcin.

This reaction has an equilibrium constant that equals 1 (the physico-
chemical conditions in and outside of the cell are sufficiently similar).
Then,

V+
max

KM,S
=

V−
max

KM,P

and if one realises that the affinity of the enzyme for S equals AS =

K−1
M,S and AP = K−1

M,P for P then

V+
max AS = V−

max AP.

This relation indicates that an enzyme with a high affinity and
high maximal import rate for the substrate also has a high value of
V−

max AP and therefore can not profit from those features very much,
as the export works equally good. It also indicates that a higher affin-
ity for the substrate is always accompanied by a lower maximal im-
port rate, V+

max, when V−
max AP is considered constant. Enzymes with

an equilibrium constant that far exceeds 1, e.g. 100, do not suffer
from this because they obey

V+
max AS = 100V−

max AP.

A 4-state catalytic cycle of an enzyme as a generic model for mo-
tor proteins, transporters and metabolic enzymes‡

A 4-state catalytic cycle leads to an rate equation that has a broad
applicability, e.g. a motor protein, nutrient transporter, or metabolic
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enzyme (a 2-substate, 1-product enzyme or a 1-substrate, 2-product
enzyme) (Fig. 27). It is therefore worthwhile to take a moment and
derive its rate equation, using the steady-state method.

We start again from the rate of change equations for the concentra-
tion of the enzyme species,

d
dt

e0 = v4 − v1

d
dt

e1 = v1 − v2

d
dt

e2 = v2 − v3

d
dt

e3 = v3 − v4

Figure 27: A 4-state enzyme mech-
anism and examples showing its
versatility. A. A 4-state enzyme
mechanism is shown. B. Four exam-
ples of 4-state enzyme mechanisms
are shown: two metabolic enzymes
catalysing either S1 + S2 −⇀↽− P or
S −⇀↽− P1 + P2, a motor protein that
takes a step along polymer from posi-
tion N to N + 1 by hydrolysis of ATP
(EN + ATP −⇀↽− EN+1 + ADP + Pi) and
a nutrient transporter transporting a
nutrient S (So −⇀↽− Si) that can flip inside
the membrane, either facing the binding
site of S on the extracellular site (E0
state) or the intracellular site (E4 state).

Since the different examples systems have different locations in
the mechanism where reactants bind the unit of the elementary rate
constants are not always the same. For instance, k−4 is a second order
rate with unit conc−1time−1 in all the schemes except for the nutrient
transporter than it is a first order rate constant with unit time−1. To



the steady-state method for enzyme kinetics 67

accommodate this variation we write the rate equations as,

v1 = κ+1 e0 − κ−1 e1

v2 = κ+2 e1 − κ−2 e2

v3 = κ+3 e2 − κ−3 e3

v4 = κ+4 e3 − κ−4 e0.

The κ’s have interpretations in terms of elementary rate constants
and concentrations that are dependent on the associated enzyme
mechanism (e.g. those shown in Fig. 27).

Again we have the restriction that the total enzyme concentration
is fixed,

eT = e0 + e1 + e2 + e3

and that due to that a linear combination exists between the rate of
change equations, i.e.

d
dt

e0 +
d
dt

e1 +
d
dt

e2 +
d
dt

e3 = 0,

which implies that the following four equations, Can you think of another set of equa-
tions we could have used instead?

v4 − v1 = 0

v1 − v2 = 0

v2 − v3 = 0

e0 + e1 + e2 + e3 = eT ,

should be used to solve for the (quasi-) steady state concentrations of
the enzyme species (i.e. e0,s, e1,s, e2,s, and e3,s) , either by hand, linear
algebra or software. This gives some quite complex equations, which
we do not show here.

The (quasi-steady state) rate of the enzyme is given by one of the
rates of the enzyme-state transitions in the mechanism (since they are
equal at steady state) with the quasi-steady state concentrations of
the enzyme species substituted. This leads to the rate equation,

v = eT

(
κ+1 κ+2 κ+3 κ+4 − κ−1 κ−2 κ−3 κ−4

)
κ−2 κ−3 + κ+2 (κ−3 + κ+3 ))(κ+1 + κ−4 ) + (κ+2 κ+3 + κ+1 (κ−2 + κ+2 + κ+3 ))κ+4 + κ−1 ((κ−3 + κ+3 )κ−4 + κ+3 κ+4 + κ−2 (κ−3 + κ−4 + κ+4 )

.

This is a rather lengthy rate equation as you can see. Much lengthier Again we proceed now, which is what
is commonly done, and use the Cleland
formalism to identify enzyme-kinetic
parameters such as KM’s, KI ’s and
Vmax’s.

than the rate equation we saw in the previous chapter when using
the rapid-equilibrium assumption. It is however a better description
of the rate of an 4-state enzyme than its rapid-equilibrium approxi-
mation.

Exercise

1. Identify the interpretation of the κ’s in the last equations in terms
of elementary rate constant and reactant concentrations for all the
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examples shown in figure 27.

2. Consider the numerator of the rate equation for the motor protein.
How much more often does the enzyme step forward when the
ratio ATP/(ADP × Pi) is doubled?



Why cells use enzymes

There are at least four reasons why cells exploit enzymes, possibly
more. They are considered one by one below.

To speed up reactions and make spontaneous, hazardous

chemical reactions negligible. Multi-substrate chemical reac-
tions always involve two steps: productive collisions of the substrates
leading to binding followed by the conversion. This is, however, not
how we often write reactions; hence,

A + B −→ AB

is not written as,
A + B −⇀↽− AB‡ −→ AB,

with AB‡ as the so called transition-state complex. The latter two-
step depiction of the reaction represents, however, the current under-
standing of how reactions work and why some are more active than
others.

The rate of the two-step reaction is dependent on the rate of
productive collisions – leading to the transition-state complex –
and the subsequent conversion. One can think of the transition-
state complex as a ‘barrier’ that needs to be overcome in order for
the reaction to occur. According to Eyring’s rate theory (https:
//en.wikipedia.org/wiki/Transition_state_theory), enzymes
speed up the reactions by reducing this barrier. The magnitude of the
barrier is associated with a free energy that A and B require to sta-
bly bind. The energy for spontaneous reactions is of the order of kbT
and if the needed free energy is higher than this the stable forma-
tion of AB may be very unlikely. What enzymes do is that they offer
physicochemical conditions in their catalytic site such that the free
energy barrier is lower, which makes the stable formation of AB more
likely and, therefore, speeds up the rate. For instance, the enzyme
adenylate kinase increases the reaction by several orders of magni-
tude (Kerns, S., et al. Nat Struct Mol Biol 22, 124–131, 2015). There is
a catch, however, enzymes cannot change the equilibrium constant
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of reactions such that when they speed up a reaction they do this by
increasing the forward and backward reaction by the same factor, in
agreement with the Haldane relationships we saw before.

By speeding up reactions with enzymes, cells also ‘lift’ all life-
supporting reactions onto a time scale that is much faster than that
of spontaneous (uncatalysed) chemical reactions, which ensures that
spontaneous, life-unsupporting chemical reactions have negligible
rates.

To regulate rates of reactions by altering enzyme con-
centrations and allosteric regulation. Usage of enzymes as
catalysts gives cells the opportunity to modulate rates according to
conditions, via changes in concentrations of enzymes and allosteric
effectors (via feedback or feedforward loops). Changes in enzyme
concentrations occur via gene expression, which acts on a slower time
scale than changes in effector concentrations. This means that cells
exploit a mode of fast and slow regulation of enzyme activities.

To revert the direction of a reaction into its energy-
demanding direction by coupling it to another energy-
liberating reaction. The net rate v of a reversible reaction with
forward rate v+ and backward rate v− equals

v = v+ − v−.

This rate is related to the change in its free energy (or Gibbs energy)
∆µ as

v = v+
(

1 − v−

v+

)
,

v−

v+
= e

∆µ
RT .

For a reaction with a single substrate and product, e.g. A 1−→ B the
change in the free energy is given by

∆µ1 = µB − µA,

with the formation free energy of compound X at concentration x
defined as µX = µ0′ + RT ln x.

From these relations, we conclude

v < 0 ⇒ ∆µ > 0

v = 0 ⇒ ∆µ = 0

v > 0 ⇒ ∆µ < 0.

Thus the sign of reaction is always opposite of that of the sign of its
free energy change. Thus a reaction proceeds in the direction of a
loss of free energy, i.e. ‘downhill of its free energy gradient’ (Fig. 28).
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Note that these µ − v relations imply that each reaction obeys

−v ln
v−

v+
= −v∆µ ≥ 0,

This can be shown to be proportional to the entropy production,
dS/dt, which is either zero or positive (for a cell and its environment
together), due to the second law of thermodynamics. For a network
of reactions, the entropy production equals dS

dt = −∑i
vi∆µi

T ≥ 0
where the sum is over all its reactions (intracellular and in-/exporting
reactions). Also, for each reactions we have the relation: sign(vi) =

−sign(∆µi).
Thus when ∆µ1 = µB − µA < 0, A is turned into B, the rate

is positive, and free energy is produced by the reaction. (Hence, B
contains less free energy than A or, in other words, B costs less Gibbs
energy to form reference compounds than A). Enzymes can use such
produced free energy to run another reaction – perform chemical

work –, for instance, C 2−→ D, in the direction that goes against its free
energy gradient, i.e. in its ∆µ2 = µD − µC > 0 direction. This feasible
if and only if,

∆µ3 = ∆µ1︸︷︷︸
≪0

+ ∆µ2︸︷︷︸
>0

< 0.

The net reaction catalysed by the enzyme is then

A + C 3−→ B + D,

and the free energy liberated in reaction A 1−→ B is used to drive

C 2−→ D uphill its free energy gradient, since ∆µ2 > 0. This is a great
feat of enzyme catalysis!

For example, ATP synthase achieves this reaction coupling when
it uses the free energy liberated by proton flow along its downward
concentration gradient to make ATP from ADP and Pi, which is an
energy demanding reaction. Thus,

ADP + Pi 1−→ ATP, ∆µ1 > 0

while
H+

o
2−→ H+

i , ∆µ2 << 0

such that

H+
o + ADP+ Pi

ATP synthase−−−−−−−→ H+
i + ATP, ∆µATP synthase = ∆µ1 +∆µ2 < 0,

provided that the enzyme can achieve sufficient free energy transduc-
tion from reaction 2 to 1 to make ∆µ3 < 0. Note that ATP synthase
functioning requires also the pumping of protons against their gradi-

ent to reestablish the proton motive force: H+
i

2−→ H+
o . The required
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Figure 28: All reactions proceed in a
direction that liberates Gibbs free en-
ergy and is therefore in a direction of
reduced free energy. Thus, free energy
is lost – ‘dissipated’ – in agreement
with the second law of thermodynam-
ics. Here we considered the reaction
A + B −⇀↽− C as an example, but the
principle applies to all reactions.

free energy is obtained, for instance, from the respiration of glucose
into carbon dioxide and water.

It is important to realise that these arguments about the direction
of reactions did not involve any kinetics, only free energies. The free
energy of a reaction with rate v = v+ − v− equals the ratio of its

backward over its forward rate, i.e. v−/v+ = e
∆µ
RT , which no longer

contains time−1 in its unit in contrast to the rates. This conclusion is
universally valid, i.e. for enzyme-catalysed and uncatalysed reactions
(enzyme kinetics and mass-action kinetics).

To allow for evolutionary tuning of reaction kinetics

Evolution tinkers with the properties of enzymes via mutations in
their genes. As a result, the rate of a reaction at specific reactant,
effector and enzyme concentrations is altered – presumably in a
direction of enhanced evolutionary fitness. A key aspect of life is
that enzyme properties are evolvable by changes in their amino-acid
sequence.

Exercise

1. To become a bit more familiar with the enzymes of glycolysis
consider once more the website https://pdb101.rcsb.org/motm/

50, showing all the glycolytic enzymes.

(a) Make a table with the identity of the glycolytic enzymes as
its rows and their following information in its columns: the
enzyme name, the number of subunits, the reaction it catal-
yses, the equilibrium constant of the reaction, the kcat of the
reaction and the kcat/KM (use a KM of one of the substrates).
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The last three pieces of information you can obtain from the
two supplementary Excel files of a paper by Flamholz et al.
(Glycolytic strategy as a tradeoff between energy yield and pro-
tein cost, PNAS, 110(24), 10039-10044, 2013). You can calculate
the equilibrium constant Keq using the following relationship

Keq = e
−∆G0′

r
RT (the value of −∆G0′

r is in the second supplemen-
tary Excel file).

(b) Verify for two reactions in glycolysis that Lavoisier’s principle
of 1987 and that mass, and therefore also chemical elements, is
conserved in a chemical reaction. Hence, with chemistry we cannot turn

lead into gold – despite all the efforts
of alchemists. This can only be done by
nuclear fusion, which is what happens
in stars. In stars, all chemical elements
are made from lighter elements (e.g.
protons) made during the Big Bang.
The larger the star, the heavier the
chemical elements are that can be
formed in it by nuclear fusion. This
is how the chemical elements of the
‘periodic table of chemical elements’
are formed in the universe in a process
called nucleosynthesis (https://
shorturl.at/ACR01).

(c) The rate v of a reaction is zero at thermodynamic equilibrium
and proportional to its displacement from thermodynamic
equilibrium,

v ∝ 1 − ∏i pi

∏j sjKeq

with pi and sj as the concentrations of the products and sub-
strates of the reaction so we were considering the reaction (with
all stoichiometric coefficients equal to 1)

At equilibrium ∏i pi,e
∏j sj,e

= Keq and the

concentration of the reaction’s reactants
have attained their equilibrium values
denoted by the subscript ‘e’.

∑
j

Sj −⇀↽− ∑
i

Pi.

From the above, we conclude that a rate is positive when

∏i pi

∏j sj
< Keq.

This means that inequality bounds exists for the concentrations
of the reactants of all the reactions in glycolysis that need to
be met in order to ensure that they all occur in the glycolytic
direction from glucose to pyruvate. Assume that ATP/ADP =

10, NADH/NAD = 0.1, and Pi = 1 mM (which we took from
Noor et al., https://doi.org/10.1371/journal.pcbi.1003483).
Determine all those inequalities for the concentrations. This type of reasoning was used in

this great paper https://doi.org/10.
1016/j.ymben.2011.02.005 by Canelas
et al. on thermodynamic aspects of
glycolysis.

Suggestions for further reading

1. Hill, T. (2012). Free energy transduction in biology: the steady-
state kinetic and thermodynamic formalism. Elsevier.

2. Hill, Terrell L. Cooperativity theory in biochemistry: steady-state
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2013.

3. Cornish-Bowden, Athel. Fundamentals of enzyme kinetics. John
Wiley & Sons, 2013.
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4. Segel, I. H. (1975). Enzyme kinetics: behavior and analysis of
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5. Phillips, R., Kondev, J., Theriot, J., & Garcia, H. (2012). Physical
biology of the cell. Garland Science.



Part II

Models of Metabolism





Basics of kinetic models of metabolism

Steady states and dynamics of metabolic networks

A microbe requires about 250-300 metabolic reactions to grow in a
particular nutrient broth (https://doi.org/10.1073/pnas.93.19.
10268). It then makes all the precursors for macromolecules from
nutrients, make those macromolecules from them, using the energy
extracted from the nutrients which act as the energy source in its
catabolism. Note that the minimal number of

needed reactions for growth can also be
calculated from a flux balance analysis.
How would you do that and how do
you then guarantee that the set of
computed reactions is the minimal set?

In an entire metabolic network (Fig. 29) all enzymes are coupled
via mass flow – the sequential conversion of reactants – and allosteric
regulation, of which some effects are rather distant: for instance, in
E. coli, phosphofructokinase is regulated by citric acid cycle inter-
mediates and glucose import by the phosphotransferase system is
regulated by 2-oxoglutarate (the C-skeleton provider for amino acid
biosynthesis).

Figure 29: An overview of cellular
metabolism from the KEGG database.
Microbial genomes encode huge
metabolic networks. All reactions
are coupled via mass flow and in ad-
dition by allosteric interactions, which
are not shown here, for coordination
of fluxes. That coordination remains
poorly understood.

When microbes grow in a constant environment (constant (or ex-
cess) nutrient concentrations, constant temperature, pH, etc.) then
the specific growth rate of a population of cells eventually settles to
a fixed value. The metabolic network (of the average cell) is then op-
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erating at a steady state. At such a steady state, the concentration of This does not mean that the metabolism
in individual cells cannot be in an
oscillating state as those would only be
visible when all cells would oscillate
in synchrony – which, by the way,
they can do under particular, but rare,
conditions.

all the metabolic intermediates occurring in the network remain con-
stant, because their net synthesis rate is balanced by their net degra-
dation rate. Such states can be calculated with mathematical models
of metabolic networks, from the kinetics and allosteric regulation of
all the enzymes and a specification of the environment of the cell.
These models can also predict the dynamics of a metabolic network
when changes are made to the environment of the cell. These models
are called kinetic models and they are the topic of this chapter.

Before we set out to explore complex, realistic models we will
study some toy models illustrating some specific aspects of metabolic
networks. Those models are deliberately made simple so that they do
not contain any features that can distract from their main message.

bifurcation. The model displayed a tps1D phenotype
due to the large efflux of acetaldehyde from the cells
at the applied flow rates. Efflux of acetaldehyde leads
to an increase in the NADH ⁄NAD ratio, causing inhi-
bition of glyceraldehyde 3-phosphate dehydrogenase
and thereby limiting the flux through the lower branch
of glycolysis and leading to accumulation of hexose
phosphates. We could suppress the tps1D phenotype

by increasing the maximal capacity of the glycerol
branch by a factor of three and decreasing the ATPase
activity (to 20%). A small adjustment of the glucose
transporter (to 80%) was sufficient to position the
Hopf bifurcation between the two flow rates used in
the experiment. The complete model description is
given in Doc. S1. The model is available in SBML for-
mat and can be simulated via JWS Online (http://jjj.
biochem.sun.ac.za/database/gustavsson/index.html).

Once the model had been adapted such that a Hopf
bifurcation was positioned between the two flow rates,
it was relatively simple to model the heterogeneity in
the cellular response by making small variations in a
single parameter. As we have no information on the
heterogeneity in the molecular make-up of the yeast
cells, we chose to model it by varying the Vmax of the
glucose transporter. It is known that during glucose
starvation (as applied to the cells during preparation of
the oscillation experiments), yeast regulates the expres-
sion level of its glucose transporters [22,23], so it is not
unreasonable to expect small differences in glucose
transport activities in the individual cells. This was the

Table 1. Classification of observed cellular behavior in NADH fluo-

rescence. A large number of cells (> 200) were analyzed in the mi-

crofluidic chamber with respect to their oscillatory behavior in

terms of NADH fluorescence intensity before and after the addition

of cyanide (5 mM) or increase in flow.

Category

Behavior

PercentageLow flow (–CN) High flow (+CN)

A Limit-cycle Limit-cycle 16.7

B Damped oscillation Limit-cycle 13.6

C Steady state Limit-cycle 40.2

D Steady state Steady state 25.7

Fig. 1. Typical time series for single-cell NADH fluorescence intensities in the microfluidic chamber. The dotted line at 4 min indicates the

increase in flow from 40, 40, 400 and 40 nLÆmin)1 to 40, 40, 40 and 800 nLÆmin)1 for channels ‘a’–’d’, respectively. This change in channel

flows causes the cell array to be covered by KCN in addition to glucose. Each curve is separated by 300 arbitrary units in intensity for better

visualization. See Experimental procedures for details on the experimental set-up.

A.-K. Gustavsson et al. Glycolytic oscillations in isolated yeast cells

FEBS Journal 279 (2012) 2837–2847 ª 2012 The Authors Journal compilation ª 2012 FEBS 2839

Figure 30: Dynamics of single yeast
cells showing glycolytic oscillations.
From Gustavsson A.K., et al. Sustained
glycolytic oscillations in individual
isolated yeast cells, FEBS Journal, 279,
2837-2847, 2012. This is about 60 years
after the start of this scientific field
when the first glycolytic oscillations
were observed by Britton Chance. If
you want to play with the mathematical
model that was used to analyse this
data go to https://jjj.bio.vu.nl/

models/gustavsson1/simulate/.
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Figure 31: Golbeter’s model of gly-
colytic oscillations from Goldbeter &
Dupont, Biophysical Chemistry, 1990.

Not all mathematical models of metabolism settle to a steady state,
some oscillate

Glycolysis in yeast can display oscillations during constant environ-
mental conditions (Fig. 30). This indicates that metabolism does not
always settle to a steady state – characterised by constant metabolite
concentrations and reaction activities (fluxes) – when the external
conditions are constant. This has been known already for a long
time. The first models that explained glycolytic oscillations proposed
the curious regulation of phoshofructokinase as a reason for the on-
set of oscillations. A good overview about such models a paper by
Goldbeter & Dupont (Goldbeter & Dupont, Allosteric regulation, co-
operativity and biochemical oscillations, Biophysical Chemistry, 37,
341, 1990). Their model is highly simplified, gives rise to oscillations
and it proposes that oscillations are caused by the MWC kinetics of
phosphofructokinase. Have a look at their paper if you are interested.
We will focus on steady states in what follows.

The steady state of a metabolic network is characterised by steady-
state concentrations and fluxes

When a metabolic network has attained a steady state then all the
metabolite concentrations that are considered as variables in the
experiment or model have attained steady-state and constant concen-
trations. It is customary to refer to reaction rates at steady state as
fluxes. Thus at steady-state, the net synthesis fluxes of all metabolites
equal their net degradation fluxes – they balance. Thus, the steady-
state concentrations have attained such values that all these fluxes
balance, for each metabolite.
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Mathematically, this means that for all variable metabolites we
have the following rate of change equation of its concentration,

Dynamic conditions: dxi
dt = ∑j nijvj(x, ej, kinetic parameters)

Steady-state conditions: ∑j nij Jj(xs, ej, kinetic parameters) = 0 (steady state)

where vj is the rate of reaction j, and Jj its steady state flux, and
metabolite xi is either used (nij < 0, made (nij > 0) or is not involved
(nij = 0) in this reaction. The rate vj are, in principle, described
by equations that follow the reversible MWC rate equation and are
therefore functions of concentrations of reactants and effectors (in the
concentration vector x, the concentration of the catalysing enzyme
and kinetic parameters of this enzyme). When we consider the en-
zyme concentration as fixed – so we are considering a fast, metabolic
time scale – then they are parameters, like the kinetic parameters, i.e.
we know their values. Then the steady-state condition is best written
as,

for all variable metabolites i : ∑
j

nij Jj(xs) = 0,

indicating that if we know the metabolite concentrations at steady
state that we know all the flux values, the Jj’s. Since we have as many
variable metabolite concentrations as dxidt = 0 equations, we have
as many equations as unknowns and, hence, we can solve the steady-
state concentrations (typically using numerical methods). Perhaps this is best illustrated with an

example. Go to the JWS Online website
(https://jjj.bio.vu.nl/models/
teusink/simulate/) choose steady state
and perform a steady state simulation.
The steady-state concentration of the
model are calculated and the fluxes.
Confirm that 2-phosphoglycerate
is synthesised at the same that it is
degraded and calculate those rates
using the kinetics of the associated
enzymes, given the associated steady-
state concentration of the reactants.

Consider once more the steady-state equation, ∑j nij Jj(xs) = 0,
without thinking about the concentrations,

∑
j

nij Jj = 0.

we have as many of these equations as variable metabolites. Can
you think of an example where we have more fluxes than the num-
ber of such equations? How many fluxes do you need to know, as
prior knowledge, if you want to determine all fluxes when you have
1, 2, 3, or 4 more fluxes than equations?

Consider the linear pathway,

S
1−⇀↽− X

2−⇀↽− Y
3−⇀↽− Z

4−⇀↽− P,

with the concentrations of S and P fixed. We have the following rate
of change equations,

dx
dt

= v1(x)− v2(x, y),
dy
dt

= v2(x, y)− v3(y, z),
dz
dt

= v3(y, z)− v4(z)

and at steady state, From this we also conclude that at
steady state: v1 = v2 = v3 = v4.

0 = v1(xs)− v2(xs, ys), 0 = v2(xs, ys)− v3(ys, zs), 0 = v3(ys, zs)− v4(zs),
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indicating that we have as many equations, i.e. 3, as unknown con-
centrations xs, ys and zs. So we can determine the concentrations if
we would know how each rate is described in terms of a rate equa-
tion from enzyme kinetics. Then giving those concentrations we can E.g. v1 = 3s/(1 + x + s), v2 = 4x/(1 +

x + y), v3 = 15y/(1 + y/2 + z), v4 =
2z/(1 + 4z + 2p) and s = 10 and p = 5.

calculate the steady state reaction rates. Consider now that we do
not know any of the rate equations, then we cannot determine the
concentrations. But we still now that

0 = v1 − v2, 0 = v2 − v3, 0 = v3 − v4.

Now we have four unknown fluxes and three equations, so we need
to know 1 flux value to determine all steady-state flux values.

Figure 32: A 4-enzyme pathway with a
negative feedback of the last metabo-
lite on the first enzyme. The rate equa-
tions for all the enzymes are shown
and are according to the general MWC
equation. Enzyme 1 has 4 subunits
and the remaining enzymes all have 1
subunit.

Negative feedback regulation leads to homeostasis of the feedback
metabolite

Consider figure 32, it shows a linear pathway with four enzymes, a
negative feedback loop and the rate equations of the enzymes. We
consider the steady state of this model. All the enzyme rates are
then equal. To understand the function of the feedback loop we plot
the steady state flux of the subsystem composed of the first three
enzymes as function of the concentration of the feedback metabolite
Z. This steady state obeys v1(xs, z) = v2(xs, ys) = v3(ys, z) where z
is a parameter. We also plot the rate of reaction 4 as function of the
concentration of Z. This is shown in figure 33A where the number
of subunits of the feedback-inhibited enzyme (reaction 1) was varied.
The two lines intersect at the steady state of the entire system at the
steady-state concentration of Z and then v1(xs, zs) = v2(xs, ys) =

v3(ys, zs) = v4(zs), which is shown in figure 33B and C. A change in
the maximal rate of the fourth enzyme changes the steady state and
enhances the steady state flux. When the feedback is strongest the
change in the steady-state concentration of Z is smallest, indicating
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negative feedback leads to homeostasis of the feedback metabolite
and that this is achieved with multi-subunit enzyme (more subunits
is then better).

Figure 33: Negative feedback in a
linear pathway leads to homeostasis
of the concentration of the feedback
metabolite. A. The steady-state flux
of the subsystem, containing enzyme
1, 2 and 3, is plotted as function of
the feedback metabolite z for different
values of the number of subunits of
the feedback inhibited enzyme. B
and C. The steady-state flux of the
subsystem, containing enzyme 1, 2 and
3, is plotted as function of the feedback
metabolite z for a feedback-inhibited
enzyme with 1 subunit (B.) and with
16 subunits (C.). The rate of enzyme 4

is also plotted as function as function
of z for two values of its maximal rate
V4. These lines intersect at the steady
state of the entire metabolic pathway.
An increase of the number of subunits
of the feedback-inhibited first enzyme
makes its dependency on z steeper.
Note that the change in the steady-state
concentration of z, upon a rise in the
Vmax of the enzyme 4, is less when
the feedback is stronger (when the
subsystem’s flux is more sensitive to z),
showing that negative feedback leads to
homeostasis of the feedback metabolite.

Reasoning about the effects of enzyme concentration changes on the
steady state of a pathway

Changes in concentrations of enzymes change their maximal rates,
i.e. Vmax = kcate, and this induces a changes in the steady state of a
metabolic network. This is, for instance, shown in figure 34 where we
consider the metabolic pathway shown in figure 32 at a steady state
with the maximal rate of enzyme 4 equal to 1. We then change this
maximal rate 20 fold at time point 50 and determine the response of
the system to this parameter change. The system responds by going
to a new steady state with changes steady-state concentrations and
pathway flux (Fig. 34).

The concentration of z increases while the others drop and the
steady-state rate increases. Why is that?
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Generally, it is the case that enzymes are inhibited by their prod-
ucts – such that the rate decreases when their concentrations rise
– and activated by their substrates – the rate increases when their
concentrations rise. Also, the rate of an enzyme increases when its
concentration rises. In the model of the linear metabolic pathway (fig-
ure 32) all enzyme obey these rules. This is a general phenomenon,
as product activation and substrate inhibition are rare. This enzyme-
kinetic logic we can exploit to reason about the effects of changed
enzyme concentrations on the change in steady-state concentrations
and fluxes in a linear metabolic pathway, which we call its response.

Figure 34: A change in the concentra-
tion of an enzyme causes a metabolic
pathway to choose from one steady
state to another. We considered the
metabolic pathway shown in figure 32

that is at a steady state with maximal
rate of enzyme 4 equal to 1. At time
point 50, we change the maximal rate
of enzyme 4 from 1 to 20. The response
of the system is a drop in the steady
state concentration of z and a rise in
the steady state concentrations of x
and y. Initially, the rates become un-
equal and then they equalise again after
some time when the new steady state
is reached. Why do some steady-state
concentrations rise and some drop?
Does the rate of a pathway always in-
crease when we increase the activity
of an enzyme, e.g. by increasing its
maximal rate or, equivalently, its en-
zyme expression (by adjusting its gene
control).

For instance, consider the linear pathway of figure 32 without
the negative feedback loop. Say, we increase the concentration of
enzyme 3. I do not think it requires any explanation that we can
safely assume that steady-state flux will have gone up in the new
steady state, since having more enzyme will speed up reactions.
But what has happened to the steady-state concentrations of the
reactants? Which ones increased and which decreased?

Since, we know that the flux has gone up and how changed
metabolite concentrations influence enzyme rates, we can deduce
which concentrations rose and which ones dropped. The easiest way
to do this is to start either at the first or last enzyme in the linear
pathway, since there depend only on a single reactant concentration.
So, since the steady-state flux goes up:

• the rate of enzyme 1 increased in the new steady state. This can
only have happened when its product concentration dropped to
relief product inhibition if its enzyme concentration stays constant.
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Thus, the concentration of X dropped.

• the concentration of Z must have increased since the only way that
the rate of enzyme 4 could have increased in the new steady state
is when the concentration of its substrate rose, since the concentra-
tion of enzyme 4 stayed constant.

• the rate of enzyme 2 also increased in the new steady state, but
its substrate X dropped in concentration (which is reducing the
rate of enzyme 2), so its product Y must have dropped too! This
happens in order to relief product inhibition to such a degree
that this can compensate for the rate decrease due to a reduced
substrate concentration.

• So, X and Y drop in concentration and Z increases in concentra-
tion. Thus, the substrate of enzyme 3 (Y) decreased in concen-
tration, while its product concentration Z rose. How can the rate
then have increased in the new steady state? Well, this enzyme’s
concentration was increased!

If you understand this logic then you should be able to make the
following exercises.

Here follows an example calculation for the linear pathway of fig-
ure 32 without the negative feedback loop when the starting values
of the maximal rates of enzymes are 10 and then we change one of
them to 20 and investigate the response of the steady state of the
metabolic pathway, which you can determine by comparing the new
steady state with the reference steady state when all maximal rates
(the Vmax’s) are 10. You can also generate such a table

yourself of course using a simulation
software package such as Copasi,
Pycses, Mathematica or Matlab.

xs ys zs flux, J
reference condition 2.41752 2.04238 1.57709 4.35296
enzyme 1 increased 10.2935 5.88801 2.95401 5.92249
enzyme 2 increased 1.1406 2.52192 1.79434 4.67628
enzyme 3 increased 1.57917 0.846116 1.71386 4.56092
enzyme 4 increased 1.92433 1.31846 0.601982 4.47337

The flux always increases as you can see. When enzyme 1 its Vmax in-
creases all concentrations increase. When enzyme 2’s Vmax increases
X drops and Y and Z increases. When enzyme 3’s Vmax increases X
and Y drops and Z increases. When enzyme 4’s Vmax increases X,
Y and Z drop. All of this follows from the logic that an enzyme is
inhibited by its product and activated by its substrates and its own
concentration.

Exercises
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1. Change of a steady-state concentration of a reactant

upon a change in enzyme concentration. To grasp the
main concept consider the following, simplest metabolic network

S 1−→ X 1−→ P

and consider the following rate equations of the two enzymes

v1 = V1

s
K1,S

1 + s
K1,S

+ x
K1,X

v2 = V2

x
Kx,X

1 + x
K2,X

+ p
K2,P

(16)

with V1 = 2, s = 1, K1,S = 0.2, K1,X = 0.1, V2 = 3, K2,X =

0.3, K2,P = 1, P = 0.1.

a. Plot v1 and v2 as function of x in 1 figure. Write down the
steady-state concentration of X and the steady state flux J.

b. Consider more enzyme 1, so change V1 from 2 to 4. What hap-
pens to steady state concentration of X and the steady state
flux?

c. Consider more enzyme 1, so change V2 from 3 to 6. What hap-
pens to steady state concentration of X and the steady state
flux?

d. Consider more enzyme 1 and 2, so change V1 from 2 to 4 and
V2 from 3 to 8. What happens to steady state concentration of X
and the steady state flux?

e. Consider more enzyme 1 and 2, so change V1 from 2 to 4 and
V2 from 3 to 6. What happens to steady state concentration of X
and the steady state flux?

2. Steady-state response of a linear pathway without

feedback and a product-insensitive first enzyme. This
is the result when all the enzyme Vmax value are changed from 10

to 20, one-by-one (not simultaneously):

xs ys zs flux, J
reference condition 4.24646 3.1216 2.04 5
enzyme 1 increased 1.74639 × 1052 2.47872 × 1036 −1.07044 × 1018 10
enzyme 2 increased 1.45711 3.1216 2.04 5
enzyme 3 increased 2.11044 1.06773 2.04 5
enzyme 4 increased 2.78991 1.72107 0.693333 5

What’s the explanation of the metabolic explosion and why does it
only occur when the concentration of enzyme 1 is increased? For a realistic example consult the

phenotype of a tps1 mutant of S.
cerevisiae in https://doi-org.vu-nl.

idm.oclc.org/10.1016/S0968-0004(98)

01205-5 which displays a metabolic
explosion.
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3. Steady-state response of a linear pathway with a neg-
ative feedback onto the first enzyme, but product in-
sensitive enzyme. Now consider the network shown in figure
32, but without the product inhibition of the first enzyme by its
product. So, we have the following steady-state fluxes relations
indicating their dependencies on reactant concentrations:

dx
dt

= v1(zs)− v2(xs, ys) = 0

dy
dt

= v2(xs, ys)− v3(ys, zs) = 0

dz
dt

= v3(ys, zs)− v4(zs) = 0.

(17)

(a) How are these relations changed when the first enzyme would
be inhibited by its product?

(b) Consider now again the situation without product inhibition
of the first enzyme. At steady state all fluxes are the same, such
that v1(zs) = v4(zs). Why is it that enzyme 2 and 4 do not
influence the flux when their concentration is changed?

(c) Remove the feedback, which enzyme does now only set the
flux?

Figure 35: Catabolism makes the ATP
which drives analbolism. What is
suggested in this figure is that the total
concentration of adenosine is fixed
and is either in the ADP or ATP state.
We often consider metabolism in this
manner.

Moiety conservation is a common feature of metabolic models

A key aspect of metabolic pathways is that their is no net synthesis
or degradation occurs of some chemical components (called moieties)
of metabolites such that their total concentration remain constant
when distributed over different metabolites. Although the cell has
to make those compounds, their total concentrations may remain
constant across conditions or when you make models you assume
those total concentrations to be constant. For instance, the adenosine
moiety of AMP, ADP and ATP is not changed at a minutes time
scale when glycolysis responds to a change in the glucose concentra-
tion. Thus, none of these three concentrations can exceed their total
sum and when one rises other have to decrease. Other examples are
NAD, NADP and coenzyme A, these are can also each be considered
conserved in total concentration under particular physiological con-
ditions or scenarios. I write scenarios because whether conservation
occurs depends on how you consider those concentrations. When
you consider glycolysis with the concentrations of AMP, ADP and
ATP as variables then the total adenosine pool is conserved but when
you consider them fixed then this is not the case. Then you implicitly
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assume a mechanism that keeps those concentrations fixed, indepen-
dent of the state of the glycolysis, which may be considered weird
since the function of glycolysis is to make ATP from ADP when it
ATP has been used in anabolic reactions of the cell (Fig. 35).

When you consider the concentrations of AMP, ADP, and ATP
variable, their concentrations change due to the occurrence of re-
actions. Because the total concentration of adenosine is considered
fixed, your ‘model’ of metabolism should obey that the sum of rate of
change equations of AMP, ADP, and ATP remains constant

dAMP
dt

+
dADP

dt
+

dATP
dt

= 0,

since this is a direct consequence of their sum being constant, i.e.

AMP(t) + ADP(t) + ATP(t) = AT .

This also implies that when you know the differential equations
for AMP, ADP and ATP, you can deduce that their sum is constant
because these equation sum to zero. Identification of conserved moieties is

often done by performing some linear
algebra procedures on the stoichiomet-
ric matrix, i.e. gaussian elimination
(row reduction) on the rows of the
stoichiometric matrix, and reducing
it to its reduced row echelon form. In
this manner, you can also determine
the rank of the stoichiometric matrix.
Perhaps you have ever done this in a
linear algebra class.

Consider, for instance, the model of Teusink et al. of yeast glycoly-
sis as shown in figure 37, the sum of the differential equations of the
concentrations of AMP, ADP and ATP indeed sum to 0, indicating
that in this model the total concentration of adenosine is conserved.

Exercise

1. Confirm that adenosine is conserved in the scheme of figure 37.
What happens when you run this model with starting concentra-
tions of AMP, ADP and ATP equal to 0? Check the differential
equation of AMP. What do you conclude when AMP is at steady
state? What happens to the steady state when you make AK irre-
versible in the model?

2. Metabolism is the cutting and pasting of pieces of

chemical compounds. Make a drawing of glycolysis from glu-
cose to ethanol (considering them both fixed). Consider adenylate
kinase (2ADP −→ AMP + ATP) and an ATP consuming reaction
catalysing ATP −→ ADP + P. Write all the reactants in the follow-
ing manner write glucose as C6e2 (so a six carbon-atom containing
molecule with 2 electrons), ATP as AP3, ADP as AP2, AMP as
AP1, Pi as P, NADH as Ne, and NAD as N. Now follow the logic
of all the chemical conversions of glycolysis, e.g. dihydroxyace-
tonephosphate is C3Pe, glyceraldehyde-3-phosphatse is C′3Pe.
What are the moieties that are being conserved? Do glycolysis, and
finding the conserved moieties, make more sense now, because
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Figure 36: Glycolysis in yeast, ac-
cording to the model of Teusink
et al. https://doi.org/10.1046/j.
1432-1327.2000.01527.x.
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you have considered which chemical conversions, which cut and
past chemical building blocks, they are subjected to?

Regulation of phosphofructokinase by ATP

What we have been sweeping under the rug until now is the com-
plexity of rate regulation of cooperative proteins due to effector-
effector and effector-reactant interactions. When we take this into
consideration the regulatory potential of cooperative proteins be-
comes clear, suggesting that they can be really complex integrative
devices.

Figure 37: The regulatory potential of
cooperative proteins is illustrated by
complexity of phosphofructokinase.
These curves were made using the
rate equation of phosphofructokinasen
(from Teusink et al. https://doi.org/
10.1046/j.1432-1327.2000.01527.x

in the presence of adenylate kinase
operating at thermodynamic equilib-
rium. Here we assume that the total
adenosine concentration is fixed. The
ADP and AMP concentration then fol-
low the thermodynamic equilibrium of
adenylate kinase, given a concentration
of ATP. When ATP is high, AMP is low.
A.-C. The regulation of PFK by several
of its reactants and effectors. Thus, at
low ATP glycolysis is activated while
at high ATP it is inhibited. This sug-
gests that the cell aims to control ATP
homeostatically, within a small range of
concentrations.

A flavour of this complexity is shown in figure 37, where the reg-
ulation of phosphofructokinase (PFK) is shown by both effectors and
substrates. It suggests that the cell aims to control ATP homeostat-
ically, within a small range of concentrations. It achieves this by its
regulation of PFK by ATP and AMP, the conservation total adeno-
sine,

AT = atp + adp + amp
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and the equilibrium relation of adenylate kinase

Keq,AK =
atp · amp

adp2 ,

which gives rise to a relation between the concentration of ATP and
ADP,

Keq,AK =
atp · amp

(AT − amp − atp)2 ⇒ amp = f (atp),

making AMP a function of AMP. Since AMP is an effector of the rate
of PFK, ATP acts as a substrate and an implicit effector of PFK via its
influence of AMP. Taken together, this leads to the suggestion that via
this PFK control the cell aims to keep its ATP concentration within
bounds.

The cell is unfortunately rather populated by multimeric en-
zyme which may all be regulated by these effector-effector and
effector-reactant interactions. Examples are glutamine synthetase
(https://doi.org/10.1002/9780470123089.ch2) and aspartate tran-
scarbamoylase (https://doi.org/10.1111/febs.12483) for which
such interactions have been shown .

Regulation of branch point fluxes‡

Branch points occur often in metabolism and often one of the two
enzymes directly after the branch point is subject to regulation, e.g.
feedback or covalent modification, that changes, for instance, the
maximal activity of this enzyme. An example of that is isocitrate de-
hydrogenase (IDH) in E. coli, which is regulated by phosphorylation,
while the other branch point enzyme, isocitrate lyase (ICL), is un-
regulated. ICL is part of the glyoxylate pathway, needed for growth
on for instance acetate, while IDH is part of the TCA cycle needed
for growth on glucose. The regulation of IDH is there to regulate the
switch between these two pathways. In this case, the branch point
metabolite is the common substrate for IDH and ICL, isocitrate, syn-
thesised by aconitase.

IDH has a higher affinity for isocitrate than ICL, i.e. 8 versus
600 µM (LaPorte et al., J Biol Chem. 1984 Nov 25;259(22):14068-75).
When isocitrate is therefore around 1 mM in concentration both path-
ways are active, if none of the two enzymes is regulated. Also we can
conclude that when ICL is active e.g. when isocitrate is ≈ 600 µM
than IDH is also active (and at maximal activity). Thus, having ICL
active and IDH inactive requires that the activity of IDH is regulated
by, for instance, covalent modification (e.g. phosphorylation). This is
because IDH has the higher affinity such that it is always active when
ICL is active. That a high affinity enzyme at a branch point is regu-
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lated is an interesting principle in metabolism at branch points where
each branch can be active without activity of the other branch.

Figure 38: Ultrasensitivity of branch
fluxes to a change in the maximal
affinity of the high-affinity enzyme.
The fluxes of two reactions, i.e. vdir and
vind, immediately following a branch
point in metabolism are shown as
function of the maximal activity Vdir
of the enzyme with the highest affinity
for the branch point metabolite. A. The
flux values as function of Vdir . B. The
sensitivity coefficients of the fluxes
shown in A to Vdir . This work was
inspired by LaPorte et al. (The branch
point effect, JBC, 259, 22, 14066-14075,
1984). Parameters: vT = 0.9, Vind = 1,
Kdir = 1, and Kind = 1.

To understand how this works we can consider the Vmax of the
regulated, high-affinity enzyme as a parameter that is controlled by
a regulatory system. LaPorte et al. (The branch point effect, JBC, 259,
22, 14066-14075, 1984) studied this case, inspired by the regulation
of IDH and ICL, and made a small model of it. They considered a
branch point metabolite S and the following three reactions, one
making it and two consuming it. One of the consuming reactions is
directly regulated by a change in its Vmax and referred as "dir" and
the rate of other reaction is indirectly regulated via a change in the
concentration of the branch point metabolite S, i.e.

T−→ S

S dir−→
S ind−→

They considered the following rate of change equation of s and kinet-
ics of the reactions,

ds
dt

= vT − Vdir
s

Kdir + s
− Vind

s
Kind + s

.

The steady state concentration ss is set by this relation

vT − Vdir
ss

Kdir + ss
− Vind

ss

Kind + ss
= 0.

When we know this concentration than we can determine the steady-
state values of the rates vind and vdir.

In figure 38A we plot these rates as function of the maximal rate
of the directly regulated reaction. What we observe is that the flux
of the indirectly regulated enzyme, the one with the lowest affinity



basics of kinetic models of metabolism 91

for S, is very sensitive – called ultrasensitive – to the change in the
maximal rate of the directly regulation enzyme. The sensitivity of
these fluxes to the maximal rate of the directly regulated enzyme is
shown in the figure 38B.

Ultrasensitivity of kinase and phosphatase couples con-
trolling activity of metabolic enzymes. Consider an enzyme
with a single substrate and a rate equation described by irreversible
Michaelis-Menten kinetics. Such an enzyme operates in its zero-order
regime when its substrate concentration greatly exceeds the KM con-
stant. The rate of the enzyme is then nearly independent of the sub-
strate concentration and therefore depends on this concentration to
zero-th order, i.e. v ≈ Vmax ∝ s0. When a kinase and phosphatase of
the same target protein operate in this regime, the steady-state phos-
phorylation fraction of the enzyme reacts ultrasensitivily to changes
in concentrations of effectors of the kinase and/or the phosphatase.
This can be illustrated and explained with the following model,

kinase: E
vk−→ EP, vk = Vk

eT−ep
Kk+eT−ep ,

phosphatase: EP
vp−→ E, vp = Vp

tp
Kk+ep ,

conservation of target protein concentration eT = e + ep,

We are considering steady states, so

vk = vp ⇒ Vk
eT − eps

Kk + eT − eps
= Vp

eps

Kk + eps

and we like to solve this equation for the steady-state concentration
of ep denoted by eps. We can do this by hand, but this leads to a
quadratic equation, so this is best done with a numerical investiga-
tion shown in Figure 39.

Next, consider now that the Vmax of a metabolic enzyme is propor-
tional to the concentration of its active state and let’s assume that this
the phosphorylated state then,

Vmax = kcatep = kcat
ep
eT

eT ,

which indicates that the Vmax of an enzyme is proportional to the to-
tal expressed concentration of the enzyme eT – set by gene expression
– and by the phosphorylated fraction eps/eT – set by the activity of
its associated kinase and phosphatase.

This analysis indicates that the activity of an enzyme can be reg-
ulated by a kinase and phosphatase pair, where the kinase is, for
instance, regulated by a (distant) metabolite that acts as a kinase
effector, and if this pair operates in its zero-order regime than this
activity regulation can be very steep.
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Figure 39: Illustration of ultrasensi-
tive phosphorylation of a metabolic
enzyme. A. When the kinase and the
phosphatase do not operate in their
first-order regime, an activation of
the kinase by 50% leads to moderate
change in the steady-state phosphory-
lation level of the metabolic enzyme. B.
When the kinase and the phosphatase
do operate in their first-order regime,
an activation of the kinase by 50% leads
to huge change in the steady-state
phosphorylation level of the metabolic
enzyme. The kinase and phosphatase
were put in their zero-order regime
by enhancing the concentration of the
metabolic enzyme. C. Illustration of the
increased sensitivity of the phospho-
rylated enzyme fraction as function of
the maximal rate of the kinase when
the total concentration of the metabolic
enzyme is increased. This analysis is
in line with the regulation of isocitrate
dehydrogenase of E. coli as reported
by La Porte and Kosland (La Porte and
Kosland, Phosphorylation of isocitrate
dehydrogenase as a demonstration
of enhanced sensitivity in covalent
modification, Nature, 305, 22, 1983.)Quite some example exist in metabolism of this mode of regula-

tion. For instance, pyruvate dehydrogenase is regulated by phospho-
rylation in this manner in eukaryotic cells and isocitrate dehydro-
genase (IDH) is regulated by phosphorylation in E. coli. The kinase In fact, a recent study estimates that

about 20% of all proteins in E. coli can
be phoshorylated and regulated in this
manner. Protein phosphorylation of
metabolic enzymes may turn out to be a
lot more important than we often think.

and phosphatase of IDH are regulated by 3-phosphoglycerate, a
glycolytic and gluconeogenic intermediate – it activates the phos-
phatase and inhibits the kinase (isocitrate does this also). As the
phosphorylated form of IDH is inactive, increased concentrations
of 3-phosphoglycerate enhance the activity of IDH. This enhances
the flux through the TCA cycle at the expense of the flux through
the glyoxylate shunt. Thus, during growth on acetate, when gluco-
neogenesis is active, IDH is inactivated by high 3-phosphoglycerate
concentrations, while it is active in the presence of glucose. During
growth on acetate and glucose the situation can be more complex, the
glyoxylate pathway and the TCA cycle can be used simultaneously
(Walsh & Koshland, JBC, 260, 14, 8430-8437, 1985).

Exercise

1. Use your favourite plotting tool (can also be Excel) to repro-
duce figure 39B to D. The best approach is to analytically solve
Vk

eT−eps
Kk+eT−eps

= Vp
eps

Kk+eps
for eps so that you can plot eps/eT as

function of Vk and change the enzymes away and towards their
zero-order regime.
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Figure 40: Cross regulation between
glycolysis and the citric acid cycle (see
also Figure 5). Illustration of the reg-
ulation of IDH by 3-phosphoglycerate
and of glucose uptake (PTS sys-
tem) by α−ketoglutarate https:

//doi.org/10.1038/nchembio.685.

The thermodynamic driving force of a metabolic network‡

In figure 41, the fermentation of glucose into ethanol and carbon
dioxide is shown. Its overall reaction is

C6H12O6
Jglc−→ 2CO2 + 2C2H6O.

From the standard Gibbs free energies of formation of these 3 chem-
ical compounds, we can calculate the equilibrium constant that is
associated with this conversion. Whether the reaction runs in the
direction of ethanol depends on the sign of the Gibbs free energy
change of the reaction (it needs to be negative) and the concentra-
tions of the reactants.

Figure 41: Cross regulation between
glycolysis and the citric acid cycle (see
also Figure 5). Illustration of the reg-
ulation of IDH by 3-phosphoglycerate
and of glucose uptake (PTS sys-
tem) by α−ketoglutarate https:

//doi.org/10.1038/nchembio.685.

Earlier, we already deduced that the rate of a reaction has an op-
posite sign than its Gibbs free energy, i.e.

sign(vi) = −sign(∆µi) ⇒ −vi∆µi ≥ 0.

A positive flux is therefore associated with a negative Gibbs free
energy change (and the flux is zero when the free energy change is
zero). In Figure 41, we define all the reactions positive when they run
in the direction of their arrow. They therefore all have a negative free
energy change.

The overall reaction is the net outcome of glycolysis plus pyruvate
decarboxylase, ATPase, adenylate kinase and alcohol dehydrogenase.
The overall reaction is satisfied when the metabolic system is running
under steady state conditions such that none of the intermediates
accumulate. This requires fixed concentrations of the reactants of
the overall reaction (hence, they are underlined in figure 41). All the
other reactants of the metabolic network are considered with variable
concentrations, which are determined by the kinetics of the enzymes
and the steady-state requirement.

Each of the associated reactions has a free energy change which
makes it run in the direction of ethanol formation. These driving
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forces are however not independent, since enzyme depend on the
concentrations of reactants which are also reactants of at least one
other enzyme. Thus, free energy changes are interdependent and
eventually also related to the concentrations of the boundary reac-
tants: glucose, carbon dioxide and ethanol. How does this work?

Consider the following sum (we consider steady-state rates, so
fluxes, now),

all reactions

∑
i=1

−Ji∆µi ≥ 0

Assume also that all the fluxes are a multiple of the glycolytic flux
(the metabolic system has a single independent flux), which we de-
fine as the rate of glucose uptake, and denote by Jglc,

Ji = ri Jglc.

When we substitute the previous relation into the former then

−Jglc ∑
i=1

ri∆µi ≥ 0

What turns out is that

∑
i=1

ri∆µi = 2µETOT + 2µCO2 − µGLC ≤ 0,

which relates the driving forces of all the reactions to the driving
force of glycolysis as a whole.

Exercise

1. In this exercise, you will confirm the main results of the previous
section. We are considering glucose fermentation as shown in
Figure 41 at steady state.
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(a) Show that 

Jglt

Jhk

Jpgi

Jp f k

Jald

Jtpi

Jgapdh

Jpgk

Jpgm

Jpyk

Jpdc

Jadh

Jak

Jatpase



=



1
1
1
1
1
1
2
2
2
2
2
2
0
2


︸ ︷︷ ︸

r

×Jglc

(b) Show that

∑
i=1

ri∆µi = 2µETOT + 2µCO2 − µGLC

(c) Show that 2µETOT + 2µCO2 − µGLC ≈ 2µ0′
ETOT + 2µ0′

CO2 − µ0′
GLC

and that therefore the contrations of glucose, carbon dioxide
and ethanol do not matter much for the driving force.

(d) What is Gibbs free energy potential adenylate kinase at steady
state?

Biochemical characteristics of a pathway regulated by negative feed-
back

Negative feedback inhibition is ubiquitous in metabolic networks
(Fig. 42). In this section, we consider what the biochemical require-
ments are for a negative feedback to function properly. It turns out
that for answering this question it suffices to consider the metabolic
segment as function of the concentration of the negative-feedback in-
hibitor when we consider it fixed (Fig. 43). The results will be obtain
do not depend on the length of this metabolic segment.

In a previous exercise, it already became clear that the steady-
state flux is set by the first enzyme when this enzyme is insensitive
to the concentration of its product. Then we only need to know the
kinetic parameters of this enzyme and the concentration of its sub-
strates in order to determine that value of the pathway flux at steady
state. (That flux is then independent of the kinetics of all the other
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General Introduction 
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Figure 2. Amino acid metabolism of E. coli. Regulatory mechanisms involve allosteric feedback 
regulation, transcriptional attenuation and transcription factors (indicated with the rounded boxes). 
Gene targets of the transcription factors are indicated with the corresponding color. Targets that are 
regulated by multiple transcription factors are indicated with affiliations (*) in the respective colors. 
Sources were Ecocyc, RegulonDB and Cho et al. 2012.  

 

Figure 42: The occurrence of negative
feedback in amino acid metabolism
of E. coli. From the introduction
of the PhD thesis of Timor Sander
(Understanding and engineering
metabolic feedback regulation of amino
acid metabolism in Escherichia coli,
Philipps-Universität Marburg, 2019.)

Figure 43: Biochemical requirements
of a functional negative feedback in a
linear metabolic pathways.
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enzymes. Their kinetics do however determine whether a steady
state indeed exists in case when a negative feedback is absent.) Not
many examples are however known of enzymes that are completely
insensitive to changes in their product concentrations, but enzymes
may have kinetic characteristics that make them nearly insensitive
and that is often enough for a potent negative feedback. One of these
is the enzyme has a very high equilibrium constant (such that it is
irreversible) as then, Note that the substrate saturation

function of the enzyme f (x; p) =
CRn−1

CRn+L AT n

ARn CT n
for the general rate

equation, derived within the MWC
framework.

v = kcat · e · f (x; p)∏
i

si
Ksi

(
1 −

∏j pj

∏i siKeq

)
⇒ v ≈ kcat · e · f (x; p)∏

i

si
Ksi

and the enzyme is only sensitive to the product concentration via
the function f (x; p). How the enzyme is sensitive to its products,
e.g. in a noncompetitive, uncompetitive or competitive manner with
respect to other reactants, depends on the precise mechanism of the
enzyme (its binding polynomials), which is subject to evolutionary
tuning. We can therefore ask the question which biochemical mech-
anisms of product interactions with enzyme 1 are most desired for a
properly functioning feedback of Z onto enzyme 1? We have already
concluded that the enzyme needs to be effectively irreversible.

An analysis of parameters is shown in figure 44. The yellow and
green line in figure 44A have approximately the same steepness
and flux range, making them almost equally good showing that
competition inhibition of Z with X brings no benefit. Binding of Z
to a binding site on the T state in the absence of competition with X
gives the steepest inhibition over the largest flux range.

Figure 44: Illustration of the effects of
equilibrium constants and inhibition
parameters on feedback of enzyme
1 by Z. The rate equation for the
feedback inhibited first enzyme is
shown. The remaining enzymes have
a kinetics v2 = 10x/(1 + x + y) and
v3 = 10y/(1 + y + z). A. Keq,1 =

103, L = 0.001 and the inhibition
parameters were changed. B. c1 =
0, c2 = 10, c3 = 10 and the equilibrium
constants were varied.
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Self-regulating metabolic pathways

So far, we have mostly considered metabolic networks with fixed
enzyme concentrations and, therefore, also fixed Vmax values. This Remember: Vmax = kcat · e with e as the

enzyme concentration.is, however, only meaningful at steady state or on time scales dur-
ing which no appreciable changes in enzyme concentrations have
occurred. A more realistic case is shown in figure 45 where gene ex-
pression of metabolic enzymes is regulated by the reactants of those
same enzymes. This resembles, for instance, the control of enzyme See Wikipedia https://en.wikipedia.

org/wiki/Trp_operon and, for an
influential paper on this, see https:

//doi.org/10.1016/S0021-9258(19)

35394-3.

concentrations in amino acid metabolism, which occurs via an tran-
scription attenuation or a transcription involving the amino acid
itself.

Figure 45: The central dogma of
molecular biology and the hierarchy
of control mechanisms in a cell.
How does the cell regulates its own
metabolic activity? One way is shown
in this figure and occurs via the binding
of metabolic intermediates X and Z to
transcription factors that regulate the
expression of the genes coding for the
enzymes that metabolise X, Y and Z.

What an analysis of the regulation of amino acid metabolism
shows is that regulation occurs on two time scales. Metabolic reg-
ulation is fast and occurs on a time scale of tens of seconds to min-
utes, via negative feedback of amino acids on the start of their
biosynthesis pathways (figure 42). Gene-expression regulation is
slower and occurs on time scale of tens of minutes to hours, via
the influence of the amino acid on the biosynthesis of its synthe-
sising enzymes, via transcription attenuation or transcription factors
(https://en.wikipedia.org/wiki/Trp_operon).

The paper by Chassagnole et al. (https://doi.org/10.1042/
0264-6021:3560415) describes a kinetic model of the metabolic
regulation of threonine biosynthesis, using rate equations that are
in line with experimental data. One interesting mode of regula-
tion occurs in this model is the occurrence of multiple negative
feedback on the same enzyme, which is common in amino-acid
metabolism. For instance, in their model aspartate kinase is inhib-
ited both by threonine and lysine, but they, interestingly, inhibit two
different isoenzymes of aspartate kinase. The introduction of this
paper is quite an interesting read on this. In any case, this paper is
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a good example of a model made with realistic, not-too-complex
enzyme kinetics. An accompanying paper by the same authors You can play with this model on the

JWS Online modelling website, e.g.
https://jjj.biochem.sun.ac.za/

models/chassagnole1/

(https://doi.org/10.1042/0264-6021:3560433) studies the influ-
ence of enzymes concentrations on the flux through the threonine
pathway and is a good read if you want to become familiar with how
models can be used to study metabolism.

Rationalising the control of amino acid biosynthesis pathways

What has remained unclear so far is why amino acids generally in-
hibit their own biosynthesis in two different ways: i. on a metabolic
time scale, via a negative feedback on the first enzyme of their
biosynthesis pathway, and ii. on a gene-expression time, via a neg-
ative feedback onto the gene expression of the enzymes in their
biosynthesis pathway.

We will first consider the inhibition of gene expression. Why does
this occur? One of the current ideas is based on the fact that cells
have a finite amount of biosynthetic resources for gene expression
and protein synthesis, such as nucleic acids, amino acids, RNA poly-
merase and ribosomes. A consequence of this is that the enhanced
synthesis of one protein lowers that of others. Thus proteins should
be used optimally and their concentration should be the minimally
required concentration for a task to ensure that all tasks can be car-
ried out as good as possible, given the constraint of finite biosyn-
thetic resources.

When we translate this economic use of protein to the fluxes of
amino-acid biosynthesis then this flux should be attained with the
least amount of enzyme expressed in the pathway. Say those enzyme
concentrations are too high, given the current consumption rate of
this amino acid by translation, then the steady-state concentration
of the amino acid increases. This would then signal an excess of
biosynthetic protein of this amino acid and the corresponding genes
should be inhibited by this amino acid. Is this indeed what happens?

To address this, we consider a model of the biosynthesis of an
amino acid with a negative feedback of the amino acid on the first
enzyme (i.e. like figure 43). We consider the following optimisation
problem. We demand a flux of 1 through the pathway. We vary the
concentration of S and minimise the concentrations of enzyme 1 to 4
needed to give rise to a flux 1 at a minimal total enzyme cost. Figure
46 gives the outcome of the optimisations at different concentrations
of S. The figures indicate that the supply curve (the steady state flux
of enzyme 1 to 3; blue) varies with the concentration of S only in the
left and right direction, while the demand rate (red) moves down.
When the concentration of S rises the steady-state concentration
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of X3 rises a little. Both systems are used close to their maximal
capacity, indicating that the enzyme concentrations are tuned to
optimal usage.

Figure 46: Optimisation of the biosyn-
thetic flux of an amino acid by min-
imisation of protein investment. The
plots on the left show the steady-state
flux of enzyme 1 − 3 (blue) and the
rate of enzyme 4 (red), at the optimal
enzyme concentrations, their intersec-
tion is the steady state (always at flux
equal to 1). The plot on the right shows
the optimal enzyme concentration as
function of the feedback metabolite, X3,
which is our proxy of an amino acid.
In this plot, the shown optimal values
correspond to different values of the
concentration of the pathway substrate
S.

The plot on the right shows the optimal concentrations of the en-
zymes as function of the steady-state concentration of X3. It is strik-
ing that enzyme 4 hardly changes in its optimal concentration, while
the concentration of enzyme 1 to 3 go down. Indeed, the activity of
the genes of those three enzymes are controlled by the concentra-
tion of X3 (the amino acid) in reality and enzyme 4 not. Note that
we did now not consider gene expression control, instead we used
optimisation to calculate the enzyme concentrations (by minimising
them to reach a flux of 1). So, effectively we predicted the behaviour
of an optimal gene expression circuit that has x3 as an input and
the concentrations of enzymes 1, 2 and 3 as output. The plot on the
right shows that the optimal behaviour is that the concentrations of
those three enzyme decrease with the concentration of X3: hence, X3

should inhibit their synthesis by inhibiting the corresponding gene
activities! Which is indeed what many cells are doing.

Now that we know the optimal relation between the steady-state
concentration of enzyme 1 − 3 needed for optimal behaviour (the
right plot), we can infer which type of gene activity control is needed.
It turns out that the three curves for the optimal steady-state con-
centrations of enzyme 1 − 3 as function of x3 can be fitted by the
following functions, Note that we omit mRNA here. This

does not change the method.
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b1
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K )
4

(1+
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Indicating that their corresponding differential equations should look
like,

de1

dt
= a1 +

b1

1 + 2 ( x3
K )

4

(1+ x3
K )

4 + c1

(
( x3

K )
4

(1+ x3
K )

4

)2 − d1e1

de1

dt
= a2 +

b1

1 + c2
( x3

K )
4

(1+ x3
K )

4

− d2e2

de1

dt
= a3 +

b1

1 + c3
( x3

K )
4

(1+ x3
K )

4

− d3e3

Thus, a basal synthesis rate of the three enzymes is needed: a1, a2, a3

in addition to a regulated rate. Those regulated rates indicates that
we need a transcription factor composed of four subunits, each with
a binding site for X3 and a binding polynomial 1 + x3

K . On the gene
promoters of enzyme 1 two of these transcription factors have to
bind and on the promoters for e2 and e3 only one. All enzymes are in
addition degraded at rates d1e1, d2e2, d3e3.

Figure 47: The structure of the optimal
gene network that ensures minimal
enzyme usage for a steady-state
flux equal to 1 as function of the
concentration S. The minimisation of
the enzyme concentrations as function
of S for a steady-state flux of 1 lead
to a relationship between the optimal
steady-state concentration of Z and
the optimal concentrations e1, e2 and
e3 (enzyme 4 had constant optimal
concentrations as function of S). This
information constraints the steady-
state behaviour of the optimal gene
network.We subsequently deduced that
the gene network structure that gives
rise the optimal relationship between
Z – the input of the gene network
– and the enzyme concentrations –
the output of the gene network. The
resulting design resembles that of
amino acid metabolic pathways as
found in bacteria.

Note that we inferred this optimal gene-regulatory circuitry (Fig.
47) from the rate equations of the metabolic enzymes– those therefore
suffice to predict optimal gene regulation. Note also that adding the
previous three differential equations to the those of the metabolic
reactants gives a dynamic model, with metabolites and enzyme con-
centrations as variables, that always reaches an optimal steady state
as function of the concentration of S. We prioneered this method for the

first time for the regulation of the
Gal operon in S. cerevisiae (https:
//doi.org/10.1038/srep01417) by
ensuring that the gene expression
is optimal given the relation of the
growth rate as function of the galactose
concentration.

I am of the opinion is that this a very useful method to figure out
which gene-expression control is needed for a certain task and to
predict the likely function of known regulatory circuitry. For this
section, we conclude that the negative feedback of an amino acids
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on the gene expression of its synthesising enzymes exists to ensure
economic usage of proteins and prevent protein overexpression (that
would reduce the performance of other cellular tasks). We already
concluded that the negative feedback of an amino acid on the first
enzyme of its biosynthesis pathway leads to a homeostatic concen-
tration of the amino acid. I think that this occurs to ensure that the
ribosome maintains a constant activity per unit ribosome, but I will
not analyse this further here (see doi:10.1111/febs.13258).

Exercise

1. Consider the method outlined of the previous section.

(a) A simplified binding model of a transcription factor composed
out of four 4 subunits was proposed. Make it one step more
realistic by deriving a MWC binding model, again with 4 sub-
units, but now with two subunits state, R and T. Assume that
the R4Z4 binds to the gene promoter and that Z binds to the R
and T state with different affinities.

(b) mRNA was omitted in the previous section. Add this to the
model and show that this not change the model in a significant
way and that the procedure then still work without problems.
mRNA was omitted to keep the model simple.

Suggestions for further reading

1. Fell, David. Understanding the control of metabolism. Vol. 2.
London: Portland press, 1997

2. Heinrich, R., & Schuster, S. (2012). The regulation of cellular sys-
tems. Springer Science & Business Media.

3. Reich, J. G., & Sel’kov, E. E. (1981). Energy metabolism of the cell:
a theoretical treatise. Academic press.

4. Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With ap-
plications to physics, biology, chemistry, and engineering. CRC
press.

5. Christopher P. Fall, Eric S. Marland, John M. Wagner, John J.
Tyson, Computational Cell Biology, Springer New York, NY, 2002.



Realistic kinetic models of metabolism: introduced via a
series of exercises

The paper by Mulquiney and Kuchel (Biochemical Journal,
342, 581-596, 1999) on glycolysis in human erythrocytes is a great
introduction to a kinetic model of metabolism with an emphasis on
its use for the prediction of steady state data. Open the paper let’s
skim through it.

In their scheme 1, the metabolic network is shown that is consid-
ered in this model. Now move to the Appendix on page 588 in the
paper, there you see the different mechanisms of the enzymes as well
as the corresponding rate equations. As you will see some of the rate
equations have been derived with the steady-state method, while
others (such as the kinetics of PFK, eqs. A4-6, and PK eq. A12) use
the rapid-equilibrium method and the MWC formalism. Steady-state
enzyme kinetics can become very complicated, consider for instance
the rate equation of GAPDH (eq. A9), it is huge and reliant on a large
number of kinetic parameters. I advise you to go from enzyme to A relevant exercise is to derive a rapid-

equilibrium rate equation of this three
substrate and three product reaction
that has the smallest number of kinetic
parameters. What is this number?

enzyme in the Appendix to get an impression of the mechanisms and
the associated rate equations. Those underlie all the model predic-
tions.

Some of these predictions are reported in Tables 1 and 2 of their
paper. As you can see most metabolite concentrations are in the mM
range, typically below it.

Open Teusink’s paper on glycolysis in S. cerevisiae next to Mulquiney’s
paper and compare the concentration of glycolytic intermediates
(Table 1 and 4 in Teusink versus Table 1 in Mulquiney), again mM
concentrations (although all about a factor of 10 higher). By the way,
sub mM concentrations are in general a good estimate of metabolite
concentrations, except for metabolites with functions associated with
their concentrations (such as osmolites).

Since concentrations are in the mM regime, affinity constants such
as KM’s and KD’s are so too, see Teusink’s Table 2 and the Appendix
of Mulquiney, again sub mM reflecting the concentrations of reac-
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tants.
Teusink’s paper gives also an overview of the used maximal rates

of the enzymes – their Vmax’s. Pick a rate equation from Teusink’s
model and calculate the steady-state flux J. What is the ratio of the
flux over the Vmax for all the enzymes? Which enzymes are close to
rate limiting given this proxy? You can calculate the flux by hand or

you can use the website: https://jjj.
biochem.sun.ac.za/models/teusink/,
using the Simulate and Steady State
buttons.An example of a realistic dynamic model of metabolism

Teusink’s model later adapted to dynamic conditions under which
glycolysis oscillates by Dupreez et al. (https://dx.doi.org/10.1111/
j.1742-4658.2012.08665.x). One of their oscillations models can be
run at https://jjj.biochem.sun.ac.za/models/dupreez4/ by click-
ing Simulate, Time Evolution and then Go!. Now see all the glycolytic
intermediates oscillating in a manner that reflects experimental data.
Compare the steady state concentrations of the Teusink to these oscil-
lations, are the concentrations still in the same regime?

Now you have had a look at three different models of glycolysis
of two different species, in a steady-state and dynamic setting and
all quantitatively based on measured enzyme kinetics, giving rise to
predictions that are in agreement with data and leading to concentra-
tions in a sub mM regime.
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Figure 48: Illustration of the effect of
changing all the Vmax’s of Hoefnagel’s
model (https://dx.doi.org/10.
1099/00221287-148-4-1003) on the
production flux of acetate. PTA, NOX
and LDH appear to be important for
influencing the acetate production flux.
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Model sensitivity to enzyme concentrations in biotechnological ap-
plications

Let’s now do something useful with a steady-state model.
Open the paper by Hoefnagel et al. (https://dx.doi.org/10.1099/
00221287-148-4-1003) and the model of that paper (https://jjj.
biochem.sun.ac.za/models/hoefnagel1/). Perform a steady-state
simulation of this model and compare the calculated flux values with
figure 2A of the paper. Confirm that those numbers match. Make all
the mutants considered in figure 2 of this paper and compare your
calculations with those reported values.

Consider figure 48, it shows the response of the acetate flux
(by acetate kinase (ACK)) to a change in the Vmax’s of all the en-
zymes in the model. Interestingly, ACK itself is not so important
(Why!?) for an increase its own flux. If you perform an analysis
of the flux control coefficients on https://jjj.biochem.sun.ac.

za/models/hoefnagel1/ with Simulate, Steady State and then Flux
Control Matrix. Then you also see that the flux control coefficient By the way, a flux control coefficient

C Jk
vi is defined as the change in the

steady-state flux through reaction k
d ln Jk = dJk

Jk
upon a change in the

rate of enzyme i by d ln vi = dvi
vi

.

Thus, C Jk
vi = d ln Jk

d ln vj
and colloquially its

interpretation is that flux k changes
by C Jk

vi % when the rate of enzyme i is
changed by 1%.

of ACK (v11) on itself, so Cv11
v11 is very small. If you look into its

row in the matrix then you find that Cv11
v4 has the largest value of

0.486, which happens to be the reaction NADH + O2 −⇀↽− NAD
catalysed by NOX, which is in agreement with figure 48. Repro-
duce some of the lines of figure 48 with a parameter scan on https:

//jjj.biochem.sun.ac.za/models/hoefnagel1/ .

Figure 49: Illustration of the effect of
changing all the Vmax’s of Hoefnagel’s
model (https://dx.doi.org/10.
1099/00221287-148-4-1003) on the
production flux of acetate. PTA, NOX
and LDH appear to be important for
influencing the acetate production flux.

In addition to NOX, LDH and PTA are also important

according to the results of figure 48. In figure 49 the result
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is shown of the influence of their Vmax’s on the production flux of
acetate, by plotting 1000 random combinations of their values. Such a
plot may indicate whether the combined change of these parameters
has a different influence on the acetate flux than expected from the
response of the acetate when they were each changed independently.
Do the results from the combined change shown in figure 49 agree
with your expectations from figure 48?



Epilogue

First of all I hope that this little book has been useful for you and in-
spired you to think about the mind-boggling fact that cell behaviour
is the outcome of hundreds to thousands of interacting proteins, each
tinkered by evolution to work more coherently in a fitness-enhancing
manner.

I hope to have convinced you that quantitative biochemistry pro-
vides the fundament of microbial physiology and biotechnology and
is truly an interesting field. Although, I did not discuss many of the
applied aspects in much depth, I hope that these were sufficiently
implied throughout the text. At the very least, I hope that this text
enables you to appreciate quantitative biochemistry more in your
own research projects.

Many topics were not covered in this text, because this would
make it too lengthy or too advanced. One example that would made
it too lengthy is the measurement of enzyme kinetics in cell free
extract and the subsequent determination of the enzyme mechanism
or enzyme-kinetic parameters. The books of enzyme kinetics by
Athel Cornish Bowden are a great reference for this. Cornish-Bowden, Athel. Fundamentals

of enzyme kinetics. John Wiley & Sons,
2013.

What I will cover in the future, but have not yet added is the in-
sights one can gain from metabolic control analysis about the de-
sign and functioning of metabolic networks. I think that considering
metabolic control analysis however only makes sense after one has
played with complex models to have a feeling for their complexity
and the important role of enzyme concentrations in them – so, after
this book. Since, I wrote this book for a 3-day course, I did not yet
add this. I also wonder what the right way of teaching this is – sep-
arate or integrated with quantitative biochemistry? For now, I think
David Fell’s book about control of metabolism is the best resource.

What I also did not discuss in great depth is analysis of the sto-
ichiometric matrix, leading to insights into moiety conservation,
independent fluxes, and flux modes, using linear algebra. This is
rather classical and can be found, for instance, in a paper by Jannie
Hofmeyr and Athel Cornish Bowden (https://doi.org/10.1006/
jtbi.2002.2547) and the great teaching notes of Jannie Hofmeyr. I
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think that this topic is however best explained by first considering
the composition of metabolism’s reactants in terms of their chemical
components (moieties) that are being cut and pasted in enzymatic
conversions, as these flow and branch through metabolism, while,
at the same time, keeping track of all this with linear algebra. In this
way, you learn most about how metabolism works and what its stoi-
chiometric constraints mean in terms of chemistry and linear algebra.
I also have some teaching material about this, but that can certainly
improve. Some basic ideas about this are however already in this
book, although not in a rigorous manner. This should be added in
the future.

A more modern stoichiometric view is the one obtained from the
concepts of elementary flux modes, which follows after stoichiomet- Bruggeman, F. J., Planqué, R., Molenaar,

D., & Teusink, B. (2020). Searching for
principles of microbial physiology.
FEMS Microbiology Reviews, 44(6),
821-844.

ric analysis, and its connections to the steady-state flux space and
constraint flux-optimisations with linear programming, associated
with flux balance analysis and optimal resource allocation. This con-
cerns some of our current work. I find our current understanding too
immature at the moment to end up in a book form like this. These
ideas still need to develop a bit more such that the theory interdepen-
dencies and general insights are more clear, as well as the best way
of explaining this without ending up in complex mathematics. For
instance, it allows for the decomposition of the entire cell metabolism
in terms of stoichiometric subnetworks, each making a single macro-
molecular constituent of a cell with its own nutrient and energy
demand. It is unclear at the moment whether studying metabolism in
this manner also leads to a better understanding of the regulation of
whole-cell metabolism.

What I hope to have conveyed is that we really do not yet have
a very good understanding of the coordinated usage of different
metabolic pathways by the cell, involving regulation by feedback
and feedforward circuitry, cooperative proteins, interdependencies
via mass flow, gene-expression control and signalling processes. I
have the impression that this is partially due to lack of quantitative
data on kinetics and regulation of enzymes. This is also not really
considered anymore in teaching and research. For instance, one
problem is that we require data that relies on methods that are no
longer carried out in many labs anymore – at least not to the degree
that they were about 30-40 years ago –: i.e., the laborious methods
from enzymology.

If microbial cell biology, physiology and biotechnology really aim
to become predictive by becoming more quantitative – as opposed to,
for instance, being driven by machine learning – then those methods
will eventually be needed again. Hopefully, by then, high-throughput
methods (e.g. lab robotics) exist for measurement of enzyme kinetics
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and regulatory interactions. This realisation starts with teaching.
A quantitative biochemical view on whole-cell metabolism and its

regulation can have a major impact on predictive microbial physiol-
ogy and biotechnology, when used in combination with metabolomics
and proteomics. Some studies by Jörg Stelling’s and Uwe Sauer’s lab
are great examples of this. https://doi.org/10.1038/nbt.2489;

https://doi.org/10.1126/scisignal.

2005602; https://doi.org/10.1038/
msb.2013.66

Another aspect of modern enzyme biochemistry and regulation
of metabolism in systems biology is the hope that principles ex-
ist that are broadly applicable across (evolutionarily-distant) (mi-
cro)organisms – so that we do not have to measure each one of them
in painstaking details. These appear to exist for metabolic strategies
– explaining why cells shift from respiration to respiro-fermentation
–, but it is unclear how predictive these principles are in applied
settings. The hope is that principles can help us make quantitative
predictions without having to know all the kinetic parameters of en-
zyme rate equations. Such principles would be really welcome, since Bruggeman, F. J., Planqué, R., Molenaar,

D., & Teusink, B. (2020). Searching for
principles of microbial physiology.
FEMS Microbiology Reviews, 44(6),
821-844.

methods based on simplified usage of enzyme kinetics (e.g. linlog
approximation, biochemical system’s theory) have not proven useful
and fitting of models with simplified kinetics leads to models that
can be poorly extrapolated to new conditions (e.g. a shift in nitrogen
or carbon source). Thus, we may need to identify principles from
metabolic models with biochemically realistic kinetics which poses
an experimental and a theoretical challenge. Considering recent ad-
vances in mathematics of metabolic networks, I really believe that
this is possible.

I am of the opinion that the reversible MWC rate equation is the
best compromise between ease-of-use, general applicability, solid fun-
daments, and number of parameters for use in detailed, predictive
models. I hope that its explanation in terms of binding polynomials
of the binding sites of enzymes made the MWC equation insightful
and useable to you. These ideas are based on concepts pioneered by
Terrell Hill, Ken Dill and Rob Phillips in texts that are more targeted
to a biophysics audience. I hope that I made it understandable to

1. Dill, K., & Bromberg, S. (2010).
Molecular driving forces: statis-
tical thermodynamics in biology,
chemistry, physics, and nanoscience.
Garland Science.

2. Hill, Terrell L. Cooperativity theory
in biochemistry: steady-state and
equilibrium systems. Springer
Science & Business Media, 2013.

3. Phillips, R., Kondev, J., Theriot, J., &
Garcia, H. (2012). Physical biology
of the cell. Garland Science.

biotechnologists, systems biologists and biochemists without a pro-
ficiency in equilibrium thermodynamics. I did therefore not discuss
the relation of MWC models to partition functions of thermodynam-
ics.

Quite some models of complex metabolic networks have been
made in the last decades, with the bigger ones containing tens of en-
zymes – so still small relative to the entire metabolic network of the
cell. Some of those we briefly touched upon in this text when illus-
trating ways to work with them and understand the role of regula-
tion of enzyme activity in them. I personally think that such models
can be useful in applications, in particular when used in combina-
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tion with optimisation methods. Although I only shortly mentioned
this, I believe this offers a great toolkit to make predictions under
parameter uncertainty for medical or biotechnological applications.

Finally, I hope that you enjoyed this text as much as I did when
writing it. An important part of science is communicating our ideas
and hypotheses in order to influence each others’ ways of thinking,
and contribute in this way to scientific solutions of important open
problems (fundamental and applied). I hope that this book did just
that.


