Evelina Tutucci

Tenure-track Assistant Professor Systems Biology Lab

Research Topics

A fascinating aspect of all cells is their complex intracellular organization. Cells are subdivided in different compartments to organize cellular functions by physically separating biological reactions.

This compartmentalization is fundamental to regulate gene expression both in space and time. To understand how cells dynamically control gene expression to adapt to changing environments, we use single molecule mRNA imaging technologies both for fixed and living cells.  These methods allow us to follow the entire mRNA life, from transcription to degradation, from the nucleus to the cytoplasm.  Using these tools, we measure, with high spatial and temporal resolution, each stage of gene expression in individual cells. We study the coordination between the different stages of gene expression, to understand how cells tune gene expression to improve their fitness. By looking at single cells, we can assess how gene expression noise and cell-to cell variability affect cellular functions.

Using cell cycle mRNA as a paradigm and S. cerevisiae as a model system, we study how cells coordinate mRNA localization, translation and decay to achieve precise gene expression regulation.

Left: “Each cell is a mesmerizing maze”; Right: S. cerevisiae-DIC imaging

Project 1 – Methods development for mRNA imaging in fixed and living cells

To study gene expression in single cells, we continuously develop fluorescence-based imaging tools to visualize single mRNAs in fixed and living cells. 

For fixed cells, we developed a single molecule fluorescent in situ hybridization protocol combined to immuno-fluorescence for S. cerevisiae.

CLN2 mRNA smFISH (yellow), Tubulin IF (magenta), DAPI (blue), DIC (gray)

For living cells, we previously developed a new RNA tagging system (MS2V6) that allows us to tag individual mRNAs in S. cerevisiae and that, compared to previous reporters is particularly suited to tag unstable mRNAs. See: https://doi.org/10.1038/nmeth.4502 and https://doi.org/10.1038/s41596-018-0037-2

Project 2 – Spatial and Temporal regulation  of gene expression in single cells

We study how the mRNA localization, translation and decay are coordinated within individual cell, by combining imaging, molecular biology, genetics and biochemistry. 

We are particularly interested in understanding how cell cycle regulated genes such as the ASH1 mRNA tune their expression to control growth  and maximize fitness.

ASH1 mRNA smFISH (red), DAPI (blue), DIC (gray)

Contact information

Email: evelina.tutucci@vu.nl

Systems Biology Lab
Vrije Universiteit Amsterdam
Room O|2 01W55
De Boelelaan 1108
1081 HZ Amsterdam


  • 2008-2013 Doctor of Philosophy, Molecular and Cellular Biology, University of Geneva, Switzerland.
  • 2008 Master of Science, Medical and Pharmaceutical Biotechnology, University of Genoa, Italy.
  • 2007 Bachelor of Science, Biotechnology, University of Genoa, Italy.


  • August 2019 – Present: Tenure-track Assistant Professor, Systems Biology Lab, Vrije University Amsterdam, Netherlands.
  • 2014 – 2019: Postdoctoral fellow, Laboratory of Dr. Robert H. Singer Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.
  • 2008 – 2014: Graduate Student, Laboratory of Dr. Françoise Stutz, Department of Cellular of Geneva, Switzerland.
  • 2005 – 2008: Undergraduate work, Laboratory of Dr. Paolo Malatesta Department Of Developmental Biology, University of Genoa, Italy.


  • 2018    Travel award the RNA Society.
  • 2017    Travel fellowship Swiss National Science Foundation: RNA society meeting, Prague.
  • 2017    Travel award by the RNA Society .
  • 2017    Poster prize RNA meeting 2017, RNA society.
  • 2016    Advanced Postdoctoral Fellowship, Swiss National Science Foundation, Dept. Anatomy and Structural Biology, Albert Einstein College of Medicine, USA
  • 2015    Travel fellowship Swiss National Science Foundation: Eukaryotic mRNA processing meeting.
  • 2019    Travel award by the RNA Society .
  • 2014   Early Postdoctoral Fellowship, Swiss National Science Foundation, Dept. Anatomy and Structural Biology, Albert Einstein College of Medicine, USA
  • 2011    Travel award by the RNA Society .
  • 2011    Travel award to attend Mechanisms of Nucleocytoplasmic Trafficking, EMBO.


Robert H. Singer, Evelina Tutucci and Maria Vera “RNA TAGGING SYSTEM FOR VISUALIZATION OF SINGLE mRNA MOLECULES” Provisional application to the US Patent and Trademark Office (no. 62/487,058).  


16.         Pichon X, Robert MC, Bertrand E, Singer RH and Tutucci E*. New generations of MS2 variants and MCP fusions to detect single mRNAs in living eukaryotic cells. Methods in Molecular Biology – RNA tagging, (In press) (*Corresponding author).

15.         Tutucci E* and Singer RH*. Simultaneous detection of mRNA and protein in S. cerevisiae by single molecule FISH and Immunofluorescence. Methods in Molecular Biology – RNA tagging, (In press). (*Co-corresponding author).

14.    Maekiniemi A, Singer RH, Tutucci E*. Single molecule mRNA fluorescent in situ hybridization combined with immunofluorescence in S. cerevisiae: Dataset and quantification (April 2020) (*Corresponding author). https://doi.org/10.1016/j.dib.2020.105511

13.         Vera M, Tutucci E, and Singer RH. Imaging single mRNA molecules in mammalian cells using an optimized MS2-MCP system. Methods in Molecular Biology – Imaging Gene Expression (2019). doi: 10.1007/978-1-4939-9674-2_1

12.         Infantino V*, Tutucci E*, Bagdiul I, Palancade B, Yeh Martin N, Zihlman A, Garcia-Molinero V, Silvano G and Stutz F. The mRNA export adaptor Yra1 contributes to DNA double-strand break repair through its C-box domain. PloS one 14 (4), e0206336 (2019) (*Equal contribution) https://doi.org/10.1371/journal.pone.0206336

11.         Tutucci E, Vera M and Singer RH, Single mRNA detection in living S. cerevisiae using a re-engineered MS2 system. Nature Protocols (September 14, 2018) https://doi.org/10.1038/s41596-018-0037-2   

10.         Tutucci E and Singer RH Shining light on the demise of single mRNAs. Cell Systems, Invited commentary for the Series Principles of Systems Biology (No. 26) (February 28, 2018) https://doi.org/10.1016/j.cels.2018.02.002

9.            Tutucci E, Livingston N, Wu B, Singer RH Imaging mRNA In Vivo, from birth to death. Annual review of biophysics 47 (2018) https://doi.org/10.1146/annurev-biophys-070317-033037 .

8.            Tutucci E*, Vera M*, Biswas J, Garcia J, Parker R and Singer RH. An improved MS2 system for accurate reporting of the mRNA life cycle. Nature methods 15, 81-89 (January 2018) (*Equal contribution) https://doi.org/10.1038/nmeth.4502  

7.            Brickner DG, Sood V, Tutucci E, Coukos R, Viets K, Singer RH, Brickner JH. Subnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms Mol Biol Cell 27(19):2980-2993 (2016 October 1). https://doi.org/10.1091/mbc.E16-03-0174  

6.            Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK, Yoon YJ, Cox D, Singer RH, Hodgson L. Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes & development 29(8):876-886, April 2015 https://doi.org/10.1101/gad.259358.115  

5.            Tutucci E, Stutz F. Keeping mRNPs in check during assembly and nuclear export. Nat Rev Mol Cell Biol. 2011 Jun;12(6):377-84 https://doi.org/10.1038/nrm3119  

4.            Iglesias N*, Tutucci E*, Gwizdek C, Vinciguerra P, Von Dach E, Corbett AH, Dargemont C, Stutz F. Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes Dev. 2010 Sep 1;24(17):1927-38; https://doi.org/10.1101/gad.583310  (*Equal contribution)

3.            Terrile M, Appolloni I, Calzolari F, Perris R, Tutucci E, Malatesta P. PDGF-B-driven gliomagenesis can occur in the absence of the proteoglycan NG2. BMC Cancer. 2010 Oct 12; 10:550 https://doi.org/10.1186/1471-2407-10-550  

2.            Appolloni I, Calzolari F, Tutucci E, Caviglia S, Terrile M, Corte G, Malatesta P. PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors. Int J Cancer. 2009 May 15;124(10):2251-9; https://doi.org/10.1002/ijc.24206

1.            Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G, Malatesta P. Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia. 2008 Dec; DOI: 10.1593/neo.08814


1.            Infantino V*, Tutucci E*, Bagdiul I, Palancade B, Yeh Martin N, Zihlman A, Garcia-Molinero V, Silvano G and Stutz F. The mRNA export adaptor Yra1 contributes to DNA double-strand break repair through its C-box domain (*Equal contribution). BioRxiv (October 15th, 2018). https://doi.org/10.1101/441980  

2.            Tsuboi T, Viana MP, Xu F, Yu J, Chanchani R, Arceo XG, Tutucci E, Choi J, Chen YS, Singer RH, Rafelski SM, Zid BM.  Mitochondrial volume fraction controls translation of nuclear-encoded mitochondrial proteins. BioRxiv (January 1st, 2019) https://doi.org/10.1101/529289  


1.        Tutucci E, Maekiniemi A and Singer RH. (2020), “Single molecule mRNA Fluorescent In Situ Hybridization combined to Immunofluorescence in S. cerevisiae: Dataset and quantification”, Mendeley Data, v4 http://dx.doi.org/10.17632/bcmn9cxyzs.4   

For an updated list of publications see my Google Scholar web page: https://scholar.google.com/citations?user=AbW4QQ0AAAAJ&hl=en