In press: Rate maximisation makes the most complex microbes behave simple!

Our theoretical work on rate maximisation in metabolism has been published in Plos Computational Biology. In this work, we took a very general approach to ask a very specific question: we included genome-scale metabolic networks, complicated enzyme kinetics, and arbitrary constraints on enzyme expression, and then asked what metabolism looks like for a microorganism that maximises its biomass production. The answer: it looks quite simple. Only a few independent pathways are used by the microbe, giving rise to the linear relations and growth laws that are found across microbiology. With this result, we can not only model important phenomena such as overflow metabolism and co-consumption, but we can even understand them.

Over the past years, we have worked on this project a lot and we are very proud of the result. Daan: “Personally, I got the best introduction to academics and systems biology that I could have hoped for: from mathematical optimisation approaches (taught by Bob), doing lab work and coping with the corresponding disappointments (taught by Coco), to thinking, theorizing, writing and picking colours for your figures (taught by Bas and Frank).” We hope that our general, theoretical approach, will lead to more results and a better overall understanding in the near future.

The full open access article can be found here: https://doi.org/10.1371/journal.pcbi.1006858